1887
Volume 63 Number 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Approximately 300 hours of ambient noise data were recorded on a grid of receivers covering an area of 4 km2 over the Lalor Mine, Canada, to test the capability of seismic interferometry to image ore deposits in the crystalline rock environment. Underground mining activities create the main source of ambient noise in the area. Alongside the ambient noise survey, a larger three‐dimensional active‐source seismic survey was also acquired and used to evaluate the interferometry results. Power spectral density calculations show random ambient noise with a frequency range of 2 Hz–35 Hz. A beamforming analysis identified body waves arriving from the west–northwest (pointing towards the mine) and surface waves propagating from the northeast. The calculated virtual shot gathers retrieved by cross‐correlating ambient noise at all receivers were processed following both two‐dimensional and three‐dimensional approaches using a sequence similar to the one applied to the active‐source three‐dimensional data. The dip‐moveout stacked section reveals a number of events similar to those observed on the processed active seismic sections. In particular, the passive seismic interferometry method is capable to partly image shallowly dipping reflections but did not produce convincing images of steeply dipping reflections. Dip‐moveout stacked sections obtained with different cross‐correlation time windows indicate that the strength and number of reflections generally increase with longer noise records. However, a few reflections at depth show reduced coherency with longer noise time windows. The passive seismic interferometry results over the Lalor mining area are encouraging, but image quality of the passive survey is lower than the acquired active three‐dimensional survey at the area. Future ambient noise surveys with longer offsets, shorter receiver spacing, and wider azimuth distribution are needed in crystalline rock environment to address the potential of the method for mineral exploration.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12244
2015-05-19
2020-09-20
Loading full text...

Full text loading...

References

  1. AdamE., PerronG., ArnoldG., MatthewsL. and MilkerietB.2003. 3D seismic imaging for VMS deposit exploration, Matagami, Quebec. In: Hardrock Seismic Exploration (eds D.W.Eaton , B.Milkereit and M.H.Salisbury ) pp. 229−246. Society of Exploration Geophysicists. ISBN 978‐1‐56080‐114‐6.
    [Google Scholar]
  2. AdamE., PerronG., MilkereitB., WuJ., CalvertA.J., SalisburyM.et al. 2000. A review of high‐resolution seismic profiling across the Sudbury, Selbaie, Noranda, and Matagami mining camps. Canadian Journal of Earth Sciences37, 503−516.
    [Google Scholar]
  3. BakulinA. and CalvertR.2004. Virtual Source: new method for imaging and 4D below complex overburden. 74th SEG meeting, Denver, Colorado, USA, Expanded Abstracts, 2477−2480.
  4. BellefleurG., MalehmirA. and MüllerC.2012. Elastic finite‐difference modeling of volcanic‐hosted massive sulphide deposits: A case study from Halfmile Lake, New Brunswick, Canada. Geophysics77(5), WC25−WC36.
    [Google Scholar]
  5. BellefleurG., SchetselaarE., WhiteD., MiahK. and DueckP.2015. 3D seismic imaging of the Lalor volcanogenic massive sulphide deposit, Manitoba, Canada. Geophysical Prospecting63(4), 855−874.
    [Google Scholar]
  6. BensenG.D., RitzwollerM.H., BarminM.P., Levshin, A.L., LinF., MoschettiM.P.et al. 2007. Processing seismic ambient noise data to obtain reliable broad‐band surface wave dispersion measurements. Geophysical Journal international169, 1239−1260.
    [Google Scholar]
  7. BongajumE., MilkereitB., AdamE. and MengY.2012. Seismic imaging in hardrock environments: the role of heterogeneity? Tectonophysics572−573, 7−15.
    [Google Scholar]
  8. CalvertA.J. and LiY.1999. Seismic reflection imaging over a massive sulfide deposit at the Matagami mining camp, Quebec. Geophysics64, 24−32.
    [Google Scholar]
  9. CheraghiS., CravenJ.A. and BellefleurG.2014. Application of Seismic interferometry in crystalline rocks− a case study from the Lalor mining area, Canada. 76th EAGE meeting, Amsterdam, The Netherlands, Expanded Abstracts, WS5–D01.
  10. CheraghiS., MalehmirA. and BellefleurG.2011. Crustal‐scale reflection seismic investigations in the Bathurst Mining Camp, New Brunswick, Canada. Tectonophysics506, 55–72.
    [Google Scholar]
  11. CheraghiS., MalehmirA. and BellefleurG.2012. 3D imaging challenges in steeply dipping mining structures: new lights on acquisition geometry and processing from the Brunswick No. 6 seismic data, Canada. Geophysics77(5), WC109−WC122.
    [Google Scholar]
  12. CheraghiS., MalehmirA., BellefleurG., BongajumE. and BastaniM.2013. Scaling behavior and the effects of heterogeneity on shallow seismic imaging of mineral deposits: A case study from Brunswick No. 6 mining area, Canada. Journal of Applied Geophysics90, 1−18.
    [Google Scholar]
  13. ClaerboutJ.F.1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics33, 264−269.
    [Google Scholar]
  14. DasI. and ZobackM.D.2013. Long‐period, long‐duration seismic events during hydraulic stimulation of shale and tight‐gas reservoirs− Part 1: Waveform characteristics. Geophysics78(6), KS97−KS108.
    [Google Scholar]
  15. DraganovD., CampmanX., ThorbeckeJ. and VerdelA.2013. Seismic exploration‐scale velocities and structure from ambient seismic noise (>1 Hz). Journal of Geophysical Research: Solid Earth118, 1–16.
    [Google Scholar]
  16. DraganovD., CampmanX., ThorbeckeJ., VerdelA. and WapenaarK.2009. Reflection imaging from ambient seismic noise. Geophysics74(5), A63–A67.
    [Google Scholar]
  17. DraganovD., WapenaarK., MulderW., SingerJ. and VerdelA.2007. Retrieval of reflections from seismic background‐noise measurements. Geophysical Research Letters34, L04305.
    [Google Scholar]
  18. EatonD.W., MilkereitB. and SalisburyM.2003. Seismic methods for deep mineral exploration: mature technologies adapted to new targets. The Leading Edge22, 580−585.
    [Google Scholar]
  19. ForghaniF. and SniederR.2010. Underestimation of body‐waves and feasibility of surface‐wave reconstruction by seismic interferometry. The Leading Edge29, 796−799.
    [Google Scholar]
  20. GalleyA.G., SymeE.C. and BailesA.H.2007. Metallogeny of the Paleoproterozoic FlinFlon Belt, Manitoba and Saskatchewan. In: Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods (ed W.D.Goodfellow ), pp. 509–531. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5.
    [Google Scholar]
  21. GouedardP., StehlyL., BrenguierF., CampilloM., Colin de VerdiereY., LaroseE., et al. 2008. Cross‐correlation of random fields: mathematical approach and applications. Geophysical Prospecting56, 375−393.
    [Google Scholar]
  22. HolznerR., EschleP., ZurcherH., LambertM., GrafR., DangelS.et al. 2005. Applying microtremor analysis to identify hydrocarbon reservoirs. First Break23, 41−46.
    [Google Scholar]
  23. HurichC. and DeemerS.2013. Combined surface and borehole seismic imaging in a hard rock terrain: a field test of seismic interferometry. Geophysics78, B103−B100.
    [Google Scholar]
  24. JeongS. and ByunJ.2014. Effective suppression of spurious events when generating reflected P‐ and S‐ wave data using seismic interferometry. Journal of Applied Geophysics106, 14−22.
    [Google Scholar]
  25. L'HeureuxE., MilkereitB. and VasudevanK.2009. Heterogeneity and seismic scattering in exploration environments. Tectonophysics472, 264−272.
    [Google Scholar]
  26. MalehmirA. and BellefleurG.2009. 3D seismic reflection imaging of VHMS deposits, insights from re‐processing of the Halfmile Lake data, New Brunswick, Canada. Geophysics74, B209−B219.
    [Google Scholar]
  27. MalehmirA., DurrheimR., BellefleurG., UrosevicM., JuhlinC., WhiteD.et al. 2012. Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future. Geophysics77(5), WC173−WC190.
    [Google Scholar]
  28. MalinowskiM., SchetselaarE. and WhiteD.2012. 3D seismic imaging in the FlinFlon VMS mining camp, Canada: Part−2 Forward modeling. Geophysics77(5), WC81−WC93.
    [Google Scholar]
  29. MilkereitB., BerrerE.K., KingA.R., WattsA.H., RobertsB., AdamE.et al. 2000. Development of 3‐D seismic exploration technology for deep nickel‐copper deposits−a case history from the Sudbury basin, Canada. Geophysics65, 1890−1899.
    [Google Scholar]
  30. MilkereitB., EatonD.W., WuJ., PerronG., SalisburyM.H., BerrerE.et al. 1996. Seismic imaging of massive sulfide deposits; Part II, Reflection seismic profiling. Economic Geology91, 829−834.
    [Google Scholar]
  31. NakataN., SniederR., TsujiT., LarnerK. and MatsuokaT.2011. Shear wave imaging from traffic noise using seismic interferometry by cross‐coherence. Geophysics76(6), SA97–SA106.
    [Google Scholar]
  32. PoliP., PedersenH.A., CampilloM. and the POLENET/LAPNET Working Group2012. Emergence of body waves from cross correlation of short period seismic noise. Geophysical Journal International188, 549–558.
    [Google Scholar]
  33. PretoriusC.C., MullerM.R., LarroqueM. and WilkinsC.2003. A review of 16 years of hardrock seismics on the Kaapvaal Craton. In: Hardrock Seismic Exploration (eds D.W.Eaton , B.Milkereit , and M.H.Salisbury ), pp. 247–268. Society of Exploration Geophysicists. ISBN 978‐1‐56080‐114‐6.
    [Google Scholar]
  34. RouxP., SabraK.G., GerstoftP. and KupermanW.A.2005. P‐waves from cross‐correlation of seismic noise. Geophysical Research Letters32, L19303.
    [Google Scholar]
  35. RuigrokE., CampmanX., DraganovD. and WapenaarK.2010. High‐resolution lithospheric imaging with seismic interferometry. Geophysical Journal International183, 339–357.
    [Google Scholar]
  36. RuigrokE., CampmanX. and WapenaarK.2011. Extraction of P‐wave reflections from microseisms. Comptes Rendus Geoscience343, 512−525.
    [Google Scholar]
  37. SaengerE.H., SchmalholzS.M., LambertM.A., NguyenT.T., TorresA., MetzgerS.et al. 2009. A passive seismic survey over a gas field: Analysis of low‐frequency anomalies. Geophysics74(2), O29−O40.
    [Google Scholar]
  38. SchusterG.T.2001. Theory of daylight/interferometric imaging: tutorial. 63rd EAGE meeting, Amsterdam, The Netherlands, Extended Abstracts, A‐32.
  39. SchusterG.T. and RickettJ.2000. Daylight imaging in V(x,y,z) media. Utah Tomography and Modeling‐Migration Project, Midyear Report and Stanford Exploration Project Midyear Reports.
  40. SchusterG.T., YuJ., ShengJ. and RickettJ.2004. Interferometric/daylight seismic imaging. Geophysical Journal International157, 838−852.
    [Google Scholar]
  41. SniederR., WapenaarK. and LarnerK.2006. Spurious multiples in seismic interferometry of primaries. Geophysics71(4), SI111−SI124.
    [Google Scholar]
  42. VasconcelosI., SniederR. and HornbyB.2008. Imaging internal multiples from subsalt VSP data—examples of target‐oriented interferometry. Geophysics73, S157–S168.
    [Google Scholar]
  43. WapenaarK.2004. Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by crosscorrelation. Physics Review Letter93, 254301‐1−254301‐4.
    [Google Scholar]
  44. WapenaarK. and FokkemaJ.2006. Green's function representations for seismic interferometry. Geophysics71, S1−S11.
    [Google Scholar]
  45. WapenaarK. and SniederR.2007. From order to disorder to order: a philosophical view on seismic interferometry. 77th SEG meeting, San Antonio, Texas, USA, Expanded Abstracts, 2683–2687.
  46. WapenaarK., ThorbeckeJ.W., DraganovD. and FokkemaJ.T.2002. Theory of acoustic daylight imaging revisited. 72nd SEG meeting, Salt lake City, Utah, USA, Expanded Abstracts, ST 1.5.
  47. WhiteD.J., SecordD. and MalinowskiM.2012. 3D seismic imaging of volcanogenic massive sulfide deposits in the FlinFlon mining camp, Canada: part 1−seismic results. Geophysics77(5).
    [Google Scholar]
  48. XuZ., JuhlinC., GudmundssonO., ZhangF., YangC., KashubinA., et al. 2012. Reconstruction of subsurface structure from ambient seismic noise: an example from Ketzin, Germany. Geophysical Journal International189, 1085–1102.
    [Google Scholar]
  49. ZhangJ., GerstoftP. and ShearerP.M.2009. High‐frequency P‐wave seismic noise driven by ocean winds. Geophysical research Letters36, L09302.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12244
Loading
/content/journals/10.1111/1365-2478.12244
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error