1887
Volume 63 Number 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The Kevitsa mafic–ultramafic intrusion in Northern Finland hosts a large, disseminated nickel–copper sulphide ore body. The Kevitsa intrusion is an active mining and exploration site, for which we have built a 3D model of the main lithological contacts and near‐mine structures in the area. To build the 3D model, 2D and 3D reflection seismic data have been used together with borehole data and geological map of the area. The Kevitsa reflection seismic data reveal the internal architecture of the Kevitsa intrusion and the surrounding units. For example, the seismic data have uncovered a previously unknown, deeper continuation of the Kevitsa intrusion. Improved 3D knowledge of the basal contact of the intrusion provides an exploration target for contact‐type mineralization. Within the intrusion, a limited area of strong reflections is observed in the data. This has been associated with discontinuous, smaller‐scale magmatic layering that is thought to control the extent of the Kevitsa main mineralization. Thus, our 3D model of the extents of the internal reflectors can provide a framework for near‐mine and deep exploration of the main type of mineralization in the area. In addition to exploration, the original purpose of the 3D seismic survey was geotechnical planning of the Kevitsa open‐pit mine. Accordingly, the 3D seismic data were used to create a 3D model of the subsurface structures, with a focus on the vicinity of the mine. The interpreted structures reveal a complex pattern of fault and fracture zones, some of which will be important for slope stability and operational planning of the final stages of the mine.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12252
2015-04-29
2024-04-16
Loading full text...

Full text loading...

References

  1. AhmadiO., JuhlinC., MalehmirA. and MunckM.2013. High‐resolution 2D seismic imaging and forward modelling of a polymetallic sulfide deposit at Garpenberg, central Sweden. Geophysics78, B339–B350.
    [Google Scholar]
  2. BellefleurG., MalehmirA. and MüllerC.2012. Elastic finite‐difference modelling of volcanic‐hosted massive sulfide deposits: A case study from Half Mile Lake, New Brunswick, Canada. Geophysics77, WC25–WC36.
    [Google Scholar]
  3. CaumonG., Collon‐DrouailletP., Le Carlier de VesludC., ViseurS. and SausseJ.2009. Surface based 3D modeling of geological structures. Mathematical Geosciences41, 927–945.
    [Google Scholar]
  4. CheraghiS., MalehmirA. and BellefleurG.2012. 3D imaging challenges in steeply dipping mining environment: New lights on acquisition geometry and processing from the Brunswick no 6 seismic data, Canada. Geophysics77(5), WC109–WC122.
    [Google Scholar]
  5. CheraghiS., MalehmirA., BellefleurG., BongajumE. and BastaniM.2013. Scaling behavior and the effects of heterogeneity on shallow seismic imaging of mineral deposits: A case study from Brunswick No. 6 mining area, Canada. Journal of Applied Geophysics90, 1–18.
    [Google Scholar]
  6. CoppardJ., KlattS. and IhlenfeldC.2013. The Sakatti Ni‐Cu‐PGE deposit in northern Finland. In: Ni‐Cr‐PGE deposits of Finland and the Kola Peninsula (eds. E.Hanski and W.Maier ), pp. 85. Excursion Guidebook Finrus, 12th Biennial SGA Meeting, 12–15 August 2013, Uppsala, Sweden. The Geological Survey of Sweden.
    [Google Scholar]
  7. DehghannejadM., JuhlinC., MalehmirA., SkyttäP. and WeihedP.2010. Reflection seismic imaging of the upper crust in the Kristineberg mining area, northern Sweden. Journal of Applied Geophysics71, 125–136.
    [Google Scholar]
  8. DehghannejadM., MalehmirA., JuhlinC. and SkyttäP.2012. 3D constraints and finite‐difference modelling of massive sulfide deposits: The Kristineberg seismic lines revisited, northern Sweden. Geophysics77, WC69–WC79.
    [Google Scholar]
  9. EatonD.W.1999. Weak elastic wave scattering from massive sulfide orebodies. Geophysics64, 289–299.
    [Google Scholar]
  10. EhsanS.A., MalehmirA. and DehghannejadM.2012. Reflection seismic data re‐processing of 2D line in the Kristineberg mining area, northern Sweden. Journal of Applied Geophysics80, 43–55.
    [Google Scholar]
  11. GolebyB., KorschR., FominT., BellB., NicollM.G., DrummondB.J.et al. 2002. Preliminary 3‐D geological model of the Kalgoorlie region, Yilgarn Craton, Western Australia, based on deep seismic reflection and potential field data. Australian Journal of Earth Sciences49, 917–933.
    [Google Scholar]
  12. GόrszczykA., MalinowskiM. and BellefleurG.2015. Enhancing 3D post‐stack seismic data acquired in hardrock environment using 2D curvelet transform. Geophysical Prospecting, this volume.
    [Google Scholar]
  13. GregoryJ., JournetN., WhiteG. and LappalainenM.2011. Kevitsa Copper Nickel Project in Finland: Technical Report for the Mineral Resources and Reserves of the Kevitsa Project, pp. 52. First Qantum Minerals Ltd.
    [Google Scholar]
  14. HedinP., MalehmirA., GeeD., JuhlinC. and DyreliusD.2014. 3D interpretation by integrating seismic and potential field data in the vicinity of the proposed COSC‐1 drill site, central Swedish Caledonides. In: New Perspectives on the Caledonides of Scandinavia and Related Areas (eds. F.Corfu , D.Gasser and D.M.Chew ). Geological Society, London, Special Publications390, 301–319.
    [Google Scholar]
  15. KoivistoE., MalehmirA., HeikkinenP., HeinonenS. and KukkonenI.2012. 2D reflection seismic investigations in the Kevitsa Ni‐Cu‐PGE deposit, northern Finland. Geophysics77, WC149–WC162.
    [Google Scholar]
  16. KoivistoE., MalehmirA., VoipioT. and WijnsC.2014. 3D lithological and structural modelling of the Kevitsa 2D and 3D reflection seismic data – A case study. 76th EAGE meeting, Amsterdam, The Netherlands, Expanded Abstracts, WS5–A03.
  17. KukkonenI., LahtiI., HeikkinenP. and HIRE Working Group2009. HIRE Seismic Reflection Survey in the Kevitsa Ni‐PGE deposit, North Finland. Geological Survey of Finland unpublished report Q 23/2008/59.
  18. KukkonenI.T., HeikkinenP., HeinonenS. and LaitinenJ.2011. Reflection seismics in exploration for mineral deposits: Initial results from the HIRE project. Geological Survey of Finland Special Paper49, 49–58.
    [Google Scholar]
  19. LambergP., VälimaaJ., ParkkinenJ. and KojonenK.2005. Structural, geochemical and magmatic modelling of the early Proterozoic Keivitsa Ni‐Cu‐PGE deposit in Sodankylä, northern Finland. In: Platinum‐Group Elements – From Genesis to Beneficiation and Environmental Impact – Extended Abstracts (eds T.O.Törmänen and T.T.Alapieti ), pp. 160–163.
    [Google Scholar]
  20. LindqvistT.2014. 3D characterization of brittle fracture zones in Kevitsa open pit excavation, northern Finland. Master`s thesis, University of Helsinki, Finland.
    [Google Scholar]
  21. MalehmirA., AnderssonM., LebedevM., UrosevicM. and MikhaltsevitchV.2013. Experimental estimation of velocities and anisotropy of a series of Swedish crystalline rocks and ores. Geophysical Prospecting61, 153–167.
    [Google Scholar]
  22. MalehmirA. and BellefleurG.2009. 3D seismic reflection imaging of volcanic‐hosted massive sulfide deposits: Insights from reprocessing Halfmile Lake data, New Brunswick, Canada. Geophysics74(6), B209–B219.
    [Google Scholar]
  23. MalehmirA., DahlinP., LundbergE., JuhlinC., SjöströmH. and HögdahlK.2011. Reflection seismic investigations in the Dannemora area, central Sweden: insights into the geometry of poly‐phase deformation zones and magnetite‐skarn deposits. Journal of Geophysical Research116, B11307.
    [Google Scholar]
  24. MalehmirA., DurrheimR., BellefleurG., UrosevicM., JuhlinC., WhiteD.et al. 2012a. Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future. Geophysics77, WC173–WC190.
    [Google Scholar]
  25. MalehmirA., JuhlinC., WijnsC., UrosevicM., ValastiP. and KoivistoE.2012b. 3D reflection seismic investigation for open‐pit mine planning and exploration in the Kevitsa Ni‐Cu‐PGE deposit, Northern Finland. Geophysics77, WC95–WC108.
    [Google Scholar]
  26. MalehmirA., KoivistoE., ManziM., CheraghiS., DurrheimR., BellefleurG.et al. 2014. A review of reflection seismic investigations in three major metallogenic regions: the Kevitsa Ni‐Cu‐PGE district (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada). Ore Geology Reviews56, 423–441.
    [Google Scholar]
  27. MalehmirA., SchmelzbachC., BongajumE., BellefleurG. and JuhlinC.2009a. 3D constraints on a possible deep> 2.5 km massive sulphide mineralization from 2D crooked‐line seismic reflection data in the Kristineberg mining area, northern Sweden. Tectonophysics479(3), 223–240.
    [Google Scholar]
  28. MalehmirA., ThunehedH. and TryggvasonA.2009b. The Palaeoproterozoic Kristineberg mining area, northern Sweden: Results from integrated 3D geophysical and geologic modelling, and implications for targeting ore deposits. Geophysics74, B9–B22.
    [Google Scholar]
  29. MalehmirA., TryggvasonA., LickorishH. And WeihedP.2007. Regional structural profiles in the western part of the Palaeoproterozoic Skellefte ore district, northern Sweden. Precambrian Research159, 1–18.
    [Google Scholar]
  30. MalinowskiM., SchetselaarE. and WhiteD.2012. 3D seismic imaging in the Flin Flon VMS mining camp — Part II: Forward modeling. Geophysics77, WC81–WC93.
    [Google Scholar]
  31. MalletJ.L.1997. Discrete modelling for natural objects. Journal of Mathematical Geology29(2), 199–219.
    [Google Scholar]
  32. MalletJ.L.2008. Numerical Earth Models, pp. 147. European Association of Geoscientists and Engineers, Education Tour Series 3, EAGE Publications BV, Houten, The Netherlands.
    [Google Scholar]
  33. MilkereitB., BerrerE.K., KingA.R., WattsA.H., RobertsB., AdamE.et al. 2000. Development of 3D seismic exploration technology for deep nickel‐copper deposits— A case history from the Sudbury basin, Canada. Geophysics65, 1890–1899.
    [Google Scholar]
  34. MilkereitB., EatonD.W., WuJ., PerronG., SalisburyM.H., BerrerE.et al. 1996. Seismic imaging of massive sulphide deposits: Part II. Reflection seismic profiling. Economic Geology91, 829–834.
    [Google Scholar]
  35. MutanenT.1997. Geology and ore petrology of the Akanvaara and Koitelainen mafic layered intrusions and the Keivitsa‐Satovara layered complex, northern Finland. Bulletin of the Geological Survey of Finland395.
    [Google Scholar]
  36. MutanenT. and HuhmaH.2001. U‐Pb geochronology of the Koitelainen, Akanvaara and Keivitsa mafic layered intrusions and related rocks. In: Radiometric Age Determinations From Finnish Lapland and Their Bearing on the Timing of Precambrian Volcano‐Sedimentary Sequences (ed M. Vaasjoki). Geological Survey of Finland Special Paper33, 229–246.
    [Google Scholar]
  37. RäsänenJ., HanskiE., JuopperiH., KortelainenV., LanneE., LehtonenM.et al. 1996. New stratigraphic map of central Finnish Lapland. In: The 22nd Nordic Geological Winter Meeting 8–11 January 1996 in Turku‐Åbo, Finland: Abstracts and Oral Poster Presentations (eds T.Kohonen and B.Lindberg ), pp. 182. University of Turku.
    [Google Scholar]
  38. RoyB. and ClowesR.2000. Seismic and potential field imaging of the Guichon Creek batholiths, British Columbia, Canada, to delineate structures hosting porphyry copper deposits. Geophysics65, 1418–1434.
    [Google Scholar]
  39. SalisburyM., HarveyC.W. and MatthewsL.2003. The acoustic properties of ores and host rocks in hardrock terranes. In: Hardrock Seismic Exploration (eds D.Eaton , B.Milkereit and M.Salisbury ), pp. 9–19. SEG.
    [Google Scholar]
  40. SchetselaarE., PehrssonS., DevineC., CurrieM., WhiteD. and MalinowskiM.2010. The Flin Flon 3D knowledge cube. Geological Survey of Canada, OpenFile 6313, 35.
    [Google Scholar]
  41. StandingJ., De LucaK., OutwhiteM., LappalainenM., WijnsC., JonesS.et al. 2009. Report and Recommendations From the Kevitsa Campaign, Finland. Confidential Report to First Quantum Minerals Ltd., pp. 125. Jigsaw Geoscience Pty Ltd., West Perth, Australia.
    [Google Scholar]
  42. WhiteD.J. and MalinowskiM.2012. Interpretation of 2D seismic profiles in complex geological terrains: Examples from the Flin Flon mining camp, Canada. Geophysics77, WC37–WC46.
    [Google Scholar]
  43. WhiteD.J., SecordD. and MalinowskiM.2012. 3D seismic imaging in the Flin Flon VMS mining camp: Part I — Seismic results. Geophysics77, WC47–WC58.
    [Google Scholar]
  44. WidessM.B.1973. How thin is a thin bed? Geophysics38, 1176–1180.
    [Google Scholar]
  45. YilmazO.2001. Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data. SEG .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12252
Loading
/content/journals/10.1111/1365-2478.12252
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error