1887
Volume 63 Number 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Based on three‐dimensional seismic reflection data, we present the first comprehensive three‐dimensional model of the fault and fracture inventory of the crystalline upper crust penetrated by the Continental Superdeep Drillhole (Kontinentale Tiefborung, Oberpfalz, Southeast Germany). The investigated volume spans ∼19×19 km2 down to 16‐km depth. It can be regarded as a typical example of metamorphic crust that has undergone numerous phases of ductile and brittle deformation since the start of the Variscan orogeny. We developed an automated workflow for identifying and quantifying the crustal fracture network in order to prepare a basis for an assessment of fluid pathways and geothermal potential of crystalline crust. The workflow comprises the following steps: determination of (i) a three‐dimensional model of major faults by structural tensor analysis and (ii) a three‐dimensional model of middle‐scale fractures by log‐Gabor filtering and image processing; (iii) validation of results by comparison with geophysical borehole data, with independent seismic and seismicity data; and (iv) definition of a three‐dimensional fracture density function serving for a statistical assessment of fracture connectivity and “relative permeability.” This assessment is based on probabilistic fractionation and percolation theories. The derived three‐dimensional distribution of “relative permeability” may be used as a kernel function for inverting hydraulic permeability from hydrothermal field experiments. By comparing borehole and three‐dimensional seismic data, we could confirm that the faults and fractures of the Kontinentale Tiefbohrung area follow a fractal law that is consistent with Turcotte's fractionation model. An important conclusion from this is that upscaling and downscaling between one‐dimensional borehole and three‐dimensional seismic data appear possible. The corresponding one‐, two‐, and three‐dimensional fractal dimension are about 0.8, 1.9, and 2.8, respectively.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12268
2015-07-24
2024-04-25
Loading full text...

Full text loading...

References

  1. AdmasuF.2008. A stochastic method for automated matching of horizons across a fault in 3D seismic data. PhD dissertation, Otto‐von‐Guericke‐Universität Magdeburg.
    [Google Scholar]
  2. AdmasuF. and TönniesK.2005. Anisotropic 3D seismic features for robust horizons correlation across faults. IEEE International Conference on Image Processing (ICIP2005) 2, 225–228.
    [Google Scholar]
  3. Al‐DajaniA. and FomelS.2010. Fractures detection using multi‐azimuth diffractions focusing measure: is it feasible. 80th SEG International Convention, Expanded Abstracts, 287–291.
  4. AustinD.2009. Percolation: Slipping Through the Cracks. American Mathematical Society.
    [Google Scholar]
  5. BaischS., BohnhoffM., CerannaL., TuY. and HarjesH.‐P.2002. Probing the crust to 9 km depth: Unique fluid injection experiments and induced seismicity at the KTB Superdeep borehole, Germany. Bulletin of Seismological Society of America92, 2369–2390.
    [Google Scholar]
  6. BansalA.R., GabrielG. and DimriV.P.2010. Power law distribution of susceptibility and density and its relation to seismic properties: An example from the German Continental Deep Drilling Program (KTB). Journal of Applied Geophysics72(2), 123–128.
    [Google Scholar]
  7. BartonC.A., ZobackM.D. and MoosD.1995. Fluid flow along potentially active faults in crystalline rock. Geology23(8), 683–686.
    [Google Scholar]
  8. BeileckeT. and RabbelW.2004. Quantification of seismic scattering in situ with the conversion log method: A study from the KTB super‐deep drill hole. Geophysical Research Letter31(16).
    [Google Scholar]
  9. BohnhoffM., BaischS. and HarjesH.‐P. 2004. Fault mechanisms of induced seismicity at the superdeep German Continental Deep Drilling Program (KTB) borehole and their relation to fault structure and stress field. Journal of Geophysical Research 109(B2).
    [Google Scholar]
  10. BrudyM., ZobackM.D., FuchsK., RummelF. and BaumgartnerJ.1997. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength. Journal of Geophysical Research102(B8), 18453–l8475.
    [Google Scholar]
  11. BuskeS.1999. 3‐D Prestack Kirchhoff migration of the ISO89–3D data set. Pure and Applied Geophysics156(1–2), 157–171.
    [Google Scholar]
  12. ByerleeJ.1978. Friction of rocks. Pure and Applied Geophysics116, 615–626.
    [Google Scholar]
  13. ChopraS. and AlexeevV.2006. Applications of texture attribute analysis to 3D seismic data. The Leading Edge25(8), 934–940.
    [Google Scholar]
  14. ClauserC., GieseP., HuengesE., KohlT., LehmannH., RybachL.et al. 1997. The thermal regime of the crystalline crust: Implication from the KTB. Journal of Geophysical Research102 (B8), 18417–18441.
    [Google Scholar]
  15. CookJ., ChandranV. and FookesC.2006. 3D face recognition using log‐Gabor templates. British Machine Vision Conference, Edinburgh, U.K., September 4–7, 2006.
    [Google Scholar]
  16. DEKORP Research Group
    DEKORP Research Group1988. Results of the DEKORP 4/KTB Oberpfalz deep seismic reflection investigations. Journal of Geophysical Research62, 69–101.
    [Google Scholar]
  17. DEKORP Research Group
    DEKORP Research Group1992. Depth determination of prominent seismic structures beneath the KTB main drillhole KTB‐HB. In: KTB‐Report 92–5, pp. 149–160. Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany.
    [Google Scholar]
  18. DuysterJ., GrawinkelA. and KotnyA.1995. Results of geoscientific investigations in the KTB field laboratory, final report: 0 – 9101 m: Petrographic and structural characterization. In: KTB‐Report 95–2, pp. B1–B80. Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany.
    [Google Scholar]
  19. EmmermannR. and LauterjungJ.1997. The German Continental Deep Drilling Program KTB: Overview and major results. Journal of Geophysical Research102(B8), 18179–18201.
    [Google Scholar]
  20. EndresH., LohrT., TrappeH., SamieeR., ThiererP.O., KrawczykC.M.et al. 2008. Quantitative fracture prediction from seismic data. Petroleum Geoscience14(4), 369–377.
    [Google Scholar]
  21. FieldD.1987. Relations between the statistics of natural images and the response properties of cortical cells. Journal of Optical Society of America, 4(12), 2379–2394.
    [Google Scholar]
  22. FigueiredoJ.J.S., OliveiraF., EsmiE., FreitasL., SchleicherJ., NovaisA.et al. 2013. Automatic detection and imaging of diffraction points using pattern recognition. Geophysical Prospecting61, 368–379.
    [Google Scholar]
  23. FloryP.J.1941. Thermodynamics of high polymer solutions. Journal of Chemical Physics9(8), 660.
    [Google Scholar]
  24. HarjesH.‐P., BramK., GebrandeH., HirschmannG., JanikM., KloecknerM.et al. 1997. Origin and nature of crustal reflections: Results from integrated seismic measurements at the KTB Super‐Deep Drilling Site. Journal of Geophysical Research102(B8), 18267–18288.
    [Google Scholar]
  25. HealyJ.H., RubeyW.W., GriggsD.T. and RaleighC.B.1968. The Denver earthquakes. Science191, 1301–1310.
    [Google Scholar]
  26. HickmanS., BartonC.B., ZobackM.D., MorinR., SassJ. and BenoitR.1997. In‐situ stress and fracture permeability in a fault‐hosted geothermal reservoir at Dixie Valley, Nevada. Geothermal Research. Council – Transactions21, 18l–189.
    [Google Scholar]
  27. HirschmannG.1992. Das Bruchstörungsmuster im KTB‐Umfeld. In: KTB‐Report 92–3, pp. 85–124. Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany.
    [Google Scholar]
  28. HirschmannG.1996a. Ergebnisse und Probleme des strukturellen Baues im Bereich der KTB‐Lokation. Geologica Bavarica101, 37–51.
    [Google Scholar]
  29. HirschmannG.1996b. KTB—The structure of a Variscan terrane boundary: seismic investigation—drilling—models. Tectonophysics264(1), 327–339.
    [Google Scholar]
  30. HirschmannG., DuysterJ., HarmsU., KontnyA., LappM., De WallH.et al. 1997. The KTB superdeep borehole: petrography and structure of a 9‐km‐deep crustal section. Geologische Rundschau86(1), S3–S14.
    [Google Scholar]
  31. HirschmannG. and LappM.1994. Evaluation of the structural geology of the KTB Hauptbohrung (KTB‐Oberpfalz HB). In: KTB‐Report 94–1, pp. 285–308. Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany.
    [Google Scholar]
  32. HuengesE., ErzingerJ., KückJ., EngeserB. and KesselsW.1997. The permeable crust: Geohydraulic properties down to 9101 m depth. Journal of Geophysical Research: Solid Earth, 102(B8), 18255–18265.
    [Google Scholar]
  33. ItoT. and ZobackM.D.2000. Fracture permeability and in situ stress to 7 km depth in the KTB scientific drillhole. Geophysical Research Letters27(7), 1045–1048.
    [Google Scholar]
  34. JahneB. and HausbeckerH.2000. Computer Vision and Applications. Academic Press, Inc.
    [Google Scholar]
  35. KernH, SchmidtR. and PoppT.1991. The velocity and density structure of the 4000 m crustal segment at the KTB drilling site and their relationship to lithological and microstructural characteristics of the rocks: An experimental approach. Scientific Drilling Journal2, 130–145.
    [Google Scholar]
  36. KernH., PoppT. and SchmidtR.1994. The effect of a deviatoric stress on physical rock properties–an experimental study simulating the in‐situ stress field at the KTB drilling site, Germany. Surveys in Geophysics15, 467–479.
    [Google Scholar]
  37. KoivistoE., MalehmirA., HeikkinenP., HeinonenS. and KukkonenI.2012. 2D reflection seismic investigations at the Kevitsa Ni‐Cu‐PGE deposit, northern Finland. Geophysics77, WC149–WC162.
    [Google Scholar]
  38. KörbeM., StillerM., HorstmeyerH. and RühlT.1997. Migration of the 3‐D deep‐seismic reflection survey at the KTB location, Oberpfalz, Germany. Tectonophysics271, 135–156.
    [Google Scholar]
  39. LeonardiS. and KümpelH.J.1998. Variability of geophysical log data and the signature of crustal heterogeneities at the KTB. Geophysical Journal International, 135(3), 964–974.
    [Google Scholar]
  40. LevesqueV.2000. Texture Segmentation Using Gabor Filters. Center for Intelligent Machines, McGill University.
    [Google Scholar]
  41. LuoY., WangY.E., Al Bin HassanN.M. and AlfarajM.N.2006. Computation of dips and azimuths with weighted structure‐tenser approach. Geophysics71(5), V119–V121.
    [Google Scholar]
  42. LüschenE., SöllnerW., HohrathA. and RabbelW.1991. Integrated P‐ and S‐wave borehole experiments at the KTB‐ Deep Drilling Site in the Oberpfalz area (SE Germany). In: Continental Lithosphere: Deep Seismic Reflections, Geodynamics Series 22, pp. 121–133. American Geophysical Union.
    [Google Scholar]
  43. MandelbrotB.B.1983. The Fractal Geometry of Nature. Freeman, New York.
    [Google Scholar]
  44. MarfurtK.J., KirlinR.L., FarmerS.L. and BahorichM.S.1998. 3‐D seismic attributes using a semblance‐based coherency algorithm. Geophysics63(4), 1150–1165.
    [Google Scholar]
  45. MalehmirA., JuhlinC., WijnsC., UrosevicM., ValastiP., and KoivistoE.2012. 3D reflection seismic imaging for open‐pit mine planning and deep exploration in the Kevitsa Ni‐Cu‐PGE deposit, northern Finland. Geophysics77, WC95–WC108.
    [Google Scholar]
  46. MarsanD. and BeanC.J.1999. Multiscaling nature of sonic velocities and lithology in the upper crystalline crust: Evidence from the KTB main borehole. Geophysical Research Letters26(2), 275–278.
    [Google Scholar]
  47. OkayaD., RabbelW., BeileckeT. and HasencleverJ.2004. P wave material anisotropy of a tectono‐metamorphic terrane: An active source seismic experiment at the KTB super‐deep drill hole, southeast Germany. Geophysical Research Letters, 31(24).
    [Google Scholar]
  48. PechnigR., HaverkampS., WohlenbergJ., ZimmermannG. and BurkhardtH.1997. Integrated log interpretation in the German Continental Deep Drilling Program: Lithology, porosity, and fracture zones. Journal of Geophysical Research: Solid Earth102(B8), 18363–18390.
    [Google Scholar]
  49. RabbelW.1994. Seismic anisotropy at the Continental Deep Drilling Site (Germany), Tectonophysics232, 329–341.
    [Google Scholar]
  50. RabbelW., BeileckeT., BohlenT., FischerD., FrankA., HasencleverJ.et al. 2004. Super‐deep vertical seismic profiling at the KTB deep drill hole (Germany): Seismic close‐up view of a major thrust zone down to 8.5 km depth. Journal of Geophysical Research109(B9), 20.
    [Google Scholar]
  51. RasolofosaonP.N.J., RabbelW., SiegesmundS. and VollbrechtA.2000. Characterization of crack distribution: Fabric analysis vs. Ultrasonic inversion. International Journal of Geophysics141, 413–424.
    [Google Scholar]
  52. SiegesmundS., VollbrechtA., ChlupacT., NoverG.., DürrastH., MüllerJ.et al. 1993. Fabric‐controlled anisotropy of petrophysical properties observed in KTB core samples. Scientific Drilling Journal4, 31–54.
    [Google Scholar]
  53. StaufferD. and AharonyA.1991. Introduction to Percolation Theory. Taylor and Francis.
    [Google Scholar]
  54. StillerM.1991. 3‐D vertical incidence seismic reflection survey at the KTB location, Oberpfalz. In: Continental Lithosphere: Deep Seismic Reflections, Geodynamics Series Vol. 22 (eds R.Meissner , L.Brown , H.‐J.Dürbaum , W.Franke , K.Fuchs and F.Seifert ), pp. 101–113. American Geophysical Union.
    [Google Scholar]
  55. StillerM.1992. Preliminary generation of a stacked data volume oft he entire ISO’89–3D data set using an envelope technique. In: KTB‐Report 92–5, pp. 3–29. Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany.
    [Google Scholar]
  56. StockmayerW.H.1943. Theory of molecular size distribution and gel formation in branched polymers. Journal of Chemical Physics11, 45–55.
    [Google Scholar]
  57. SzalaiováE.2012. Seismic data based assessment of geothermal potential of the German Continental Deep Drilling Site (KTB). PhD thesis, University of Kiel, Kiel, Germany.
    [Google Scholar]
  58. TurcotteD.L.1997. Fractals and Chaos in Geology and Geophysics, 2nd edn, pp. 398. Cambridge University Press.
    [Google Scholar]
  59. VoigtW.1928. Lehrbuch der Kristallphysik. Teubner‐Verlag, Leipzig.
    [Google Scholar]
  60. WiederholdH.1992. Interpretation of envelope‐stacked 3D seismic data and its migration. In: KTB‐Report 92–5, pp. 67–114. Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany.
    [Google Scholar]
  61. ZimmermannG., BurkhardtH. and EngelhardL.2003. Scale dependence of hydraulic and structural parameters in the crystalline rock of the KTB. Pure and Applied Geophysics160(5–6), 1067–1085.
    [Google Scholar]
  62. ZobackM.D.2010. Reservoir Geomechanics. Cambridge University Press. Cambridge, U.K.
    [Google Scholar]
  63. ZulaufG. and DuysterJ.1997. Faults and veins in the superdeep well KTB: constraints on the amount of Alpine intra‐plate thrusting and stacking of Variscan basement (Bohemian Massif, Germany). Geologische Rundschau86, S28–S33.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12268
Loading
/content/journals/10.1111/1365-2478.12268
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error