1887
Volume 64, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Wavefield decomposition forms an important ingredient of various geophysical methods. An example of wavefield decomposition is the decomposition into upgoing and downgoing wavefields and simultaneous decomposition into different wave/field types. The multi‐component field decomposition scheme makes use of the recordings of different field quantities (such as particle velocity and pressure). In practice, different recordings can be obscured by different sensor characteristics, requiring calibration with an unknown calibration factor. Not all field quantities required for multi‐component field decomposition might be available, or they can suffer from different noise levels. The multi‐depth‐level decomposition approach makes use of field quantities recorded at multiple depth levels, e.g., two horizontal boreholes closely separated from each other, a combination of a single receiver array combined with free‐surface boundary conditions, or acquisition geometries with a high‐density of vertical boreholes. We theoretically describe the multi‐depth‐level decomposition approach in a unified form, showing that it can be applied to different kinds of fields in dissipative, inhomogeneous, anisotropic media, e.g., acoustic, electromagnetic, elastodynamic, poroelastic, and seismoelectric fields. We express the one‐way fields at one depth level in terms of the observed fields at multiple depth levels, using extrapolation operators that are dependent on the medium parameters between the two depth levels. Lateral invariance at the depth level of decomposition allows us to carry out the multi‐depth‐level decomposition in the horizontal wavenumber–frequency domain. We illustrate the multi‐depth‐level decomposition scheme using two synthetic elastodynamic examples. The first example uses particle velocity recordings at two depth levels, whereas the second example combines recordings at one depth level with the Dirichlet free‐surface boundary condition of zero traction. Comparison with multi‐component decomposed fields shows a perfect match in both amplitude and phase for both cases. The multi‐depth‐level decomposition scheme is fully customizable to the desired acquisition geometry. The decomposition problem is in principle an inverse problem. Notches may occur at certain frequencies, causing the multi‐depth‐level composition matrix to become uninvertible, requiring additional notch filters. We can add multi‐depth‐level free‐surface boundary conditions as extra equations to the multi‐component composition matrix, thereby overdetermining this inverse problem. The combined multi‐component–multi‐depth‐level decomposition on a land data set clearly shows improvements in the decomposition results, compared with the performance of the multi‐component decomposition scheme.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12290
2015-07-22
2019-12-13
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.1980. Quantitative Seismology. Freeman and Company, New York.
    [Google Scholar]
  2. AlexandrovD., BakulinA. and BurnstadR.2012. Redatuming of synthetic land data with shallow buried receivers using the virtual source method. 82nd SEG meeting, Las Vegas, USA, Expanded Abstracts, 1–5.
    [Google Scholar]
  3. AlexandrovD., BakulinA., LegerP. and KashtanB.2014. Dual‐sensor summation with buried land sensors. 84th SEG meeting, Denver, USA, Expanded Abstracts, 1929–1933.
    [Google Scholar]
  4. AlmagroVidal C. and WapenaarK.2014. Passive seismic interferometry by multi‐dimensional deconvolution‐decorrelation. 84th SEG meeting, Denver, USA, Expanded Abstracts, 2224–2228.
    [Google Scholar]
  5. AlmagroVidal C., van der NeutJ., DraganovD., DrijkoningenG. and WapenaarK.2011. Retrieval of reflections from ambient‐noise field data using illumination diagnostics. 81st SEG meeting, San Antonio, USA, Expanded Abstracts, 1613–1617.
    [Google Scholar]
  6. AlmagroVidal, C., DraganovD., Van der NeutJ., DrijkoningenG., and WapenaarK., 2014. Retrieval of reflections from ambient noise using illumination diagnosis, Geophysical Journal International, 198, 1572–1584.
    [Google Scholar]
  7. AmundsenL.1999. Elimination of free surface‐related multiples without need of the source wavelet. 69th SEG meeting, Houston, USA, Expanded Abstracts, 1064–1067.
    [Google Scholar]
  8. AmundsenL. and HolvikE.2004. Processing Electromagnetic Data . Patent GB2415511.
  9. AmundsenL., LósethL., MittetR., EllingsrudS. and UrsinB.2006. Decomposition of electromagnetic fields into upgoing and downgoing components. Geophysics71(5), G211–G223.
    [Google Scholar]
  10. AmundsenL. and ReitanA.1995. Decomposition of multicomponent sea‐floor data into upgoing and downgoing P‐ and S‐waves. Geophysics60, 563–572.
    [Google Scholar]
  11. AmundsenL. and RobertssonJ.O.A.2014. Wave equation processing using finite‐difference propagators part 1: Wavefield dissection and imaging of marine multicomponent seismic data, Geophysics79(6), T287–T300.
    [Google Scholar]
  12. BakulinA., BurnstadR., JervisM. and KelamisP.2012a. The feasibility of permanent land seismic monitoring with buried geophones and hydrophones in a desert environment. 74th EAGE Conference & Exhibition, Copenhagen, Denmark, 1–5.
    [Google Scholar]
  13. BakulinA., BurnstadR., JervisM. and KelamisP.2012b. Evaluating permanent seismic monitoring with shallow buried sensors in a desert environment. 82nd SEG meeting, Las Vegas, USA, Expanded Abstracts1–5.
    [Google Scholar]
  14. BakulinA. and CalvertR., 2006. The virtual source method: theory and case study. Geophysics71(4), SI139–SI150.
    [Google Scholar]
  15. BeasleyC.J., CoatesR., JiY. and PerdomoJ.2013a. Wave equation receiver dehosting: a provocative example, 83rd SEG meeting, Houston, USA, Expanded Abstracts, 4226–4230.
    [Google Scholar]
  16. BeasleyC.J., CoatesR. and LapilliC.2013b. Wave equation receiver deghosting. IEEE 5th International Workshop on Computational Advances in Multi‐Sensor Adaptive Processing, St. Martin, France, 280–283.
    [Google Scholar]
  17. BerronC., ForguesE., JervisM., BakulinA. and BurnstadR.2012. Buried sources and receivers in a karsted desert environment. 74th EAGE Conference & Exhibition, Copenhagen, Denmark, 1–5.
    [Google Scholar]
  18. BleisteinN., 1987. On the imaging of reflectors in the earth. Geophysics52, 931–942.
    [Google Scholar]
  19. BleisteinN., CohenJ.K. and HaginF.G., 1987. Two and one‐half dimensional born inversion with an arbitrary reference. Geophysics52, 26–36.
    [Google Scholar]
  20. BurnstadR., BakulinA., JervisM. and AlexandrovD.2012. Successful imaging of land hydrophone and dual sensor data in a dry desert environment. 82nd SEG meeting, Las Vegas, USA, Expanded Abstracts, 1–5.
    [Google Scholar]
  21. ChengC.H. and ToksözM.N.1981. Elastic wave propagation in a fluid‐filled borehole and synthetic acoustic logs. Geophysics46, 1042–1053.
    [Google Scholar]
  22. CottonJ. and ForguesE.2012. Dual‐depth hydrophones for ghost reduction in 4D land monitoring. 82nd SEG meeting, Las Vegas, USA, Expanded Abstracts, 1–5.
    [Google Scholar]
  23. DankbaarJ.W.M., 1985. Separation of P‐ and S‐waves. Geophysical Prospecting33, 970–986.
    [Google Scholar]
  24. DayA., Klüver, T., SöllnerW., HocineT. and CarlsonD., 2013. Wavefield‐separation methods for dual‐sensor towed‐streamer data. Geophysics78(2), WA55–WA70.
    [Google Scholar]
  25. DraganovD., WapenaarK. and Thorbecke J., 2006. Seismic interferometry: reconstructing the earth's reflection response. Geophysics71(4), SI61–SI70.
    [Google Scholar]
  26. ElAllouche N.2011. Converted waves in shallow marine environments: modelling and field experiments. Ph.D. thesis, Delft University of Technology, Netherlands.
    [Google Scholar]
  27. FishmanL., McCoyJ.J. and WalesS.C., 1987. Factorization and path integration of the Helmholtz equation: Numerical algorithms. Journal of the Acoustical Society of America81, 1355–1376.
    [Google Scholar]
  28. FokkemaJ.T. and Van den BergP.M.1993. Seismic Applications of Acoustic Reciprocity. Elsevier Science Publishers B.V.
    [Google Scholar]
  29. FrasierC.W., 1970. Discrete time solution of plane P‐SV waves in a plane layered medium. Geophysics35, 197–219.
    [Google Scholar]
  30. FrijlinkM. and WapenaarK., 2010. Reciprocity theorems for one‐way wave fields in curvilinear coordinate systems. SIAM Journal on Imaging Sciences3, 390–415.
    [Google Scholar]
  31. FrijlinkM., Van BorselenR. and SöellnerW., 2011. The free surface assumption for marine data‐driven demultiple methods. Geophysical Prospecting59, 269–278.
    [Google Scholar]
  32. GrimbergenJ.L.T., DessingF.J. and WapenaarK., 1998. Modal expansion of one‐way operators in laterally varying media. Geophysics63, 995–1005.
    [Google Scholar]
  33. GrobbeN. and SlobE.2013. Validation of an electroseismic and seismoelectric modeling code for layered earth models, by the explicit homogeneous space solutions. 83rd SEG meeting, Houston, USA, Expanded Abstracts, 1847–1851.
    [Google Scholar]
  34. GrobbeN., Van der NeutJ., AlmagroVidal C., DrijkoningenG. and WapenaarK.2014. Wavefield decomposition of field data, using a shallow horizontal downhole sensor array and a free‐surface constraint. 76th EAGE Conference & Exhibition, Amsterdam, Netherlands, 1–5.
    [Google Scholar]
  35. HaartsenM.W. and PrideS.R., 1997. Electroseismic waves from point sources in layered media. Journal of Geophysical Research102(B11), 24745–24769.
    [Google Scholar]
  36. HolvikE. and AmundsenL., 2005. Elimination of the overburden response from multicomponent source and receiver seismic data, with source designature and decomposition into PP‐, PS‐, SP‐, and SS‐wave responses. Geophysics70(2), S43–S59.
    [Google Scholar]
  37. JockerJ., SmeuldersD., DrijkoningenG., Van der LeeC. and KalfsbeekA.2004. Matrix propagator method for layered porous media: Analytical expressions and stability criteria. Geophysics69, 1071–1081.
    [Google Scholar]
  38. KelderO.1998. Frequency‐dependent wave propagation in water‐saturated porous media. PhD thesis, Delft University of Technology, Netherlands.
    [Google Scholar]
  39. KennettB.L.N., 1983. Seismic Wave Propagation in Stratified Media. Cambridge University Press.
    [Google Scholar]
  40. MajdanskiM., KostovC., KraghE., MooreI., ThompsonM. and MispelJ., 2011. Attenuation of free‐surface multiples by up/down deconvolution for marine towed‐streamer data. Geophysics76(6), V129–V138.
    [Google Scholar]
  41. MaxwellS.C., RutledgeJ., JonesR. and FehlerM.2010. Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics75(5), 75A129–75A137.
    [Google Scholar]
  42. MehtaK., BakulinA., SheimanJ., CalvertR. and SniederR., 2007. Improving the virtual source method by wavefield separation. Geophysics72(4), V79–V86.
    [Google Scholar]
  43. MoldoveanuN., CombeeL., EganM., HampsonG., SydoraL. and AbrielW., 2007. Over/under towed‐streamer acquisition: A method to extend seismic bandwidth to both higher and lower frequencies. The Leading Edge26, 41–58.
    [Google Scholar]
  44. MuijsR., RobertssonJ.O. and HolligerK., 2007. Prestack depth migration of primary and surface‐related multiple reflections part I: imaging. Geophysics72(2), S59–S69.
    [Google Scholar]
  45. NabighianM.N.1987. Electromagnetic Methods in Applied Geophysics. Society of Exploration Geophysicists.
    [Google Scholar]
  46. NakataN., SniederR. and BehmM., 2014. Body‐wave interferometry using regional earthquakes with multidimensional deconvolution after wavefield decomposition at free surface. Geophysical Journal International199, 1125–1137.
    [Google Scholar]
  47. PengC., ChengC.H. and ToksözM.N., 2003. Borehole effects on downhole seismic measurements. Geophysical Prospecting41, 883–912.
    [Google Scholar]
  48. PrideS., 1994. Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Review B50(21), 15678–15696.
    [Google Scholar]
  49. PrideS.R. and HaartsenM.W., 1996. Electroseismic wave properties. Journal of the Acoustical Society of America100, 1301–1315.
    [Google Scholar]
  50. RobertssonJ.O.A. and AmundsenL., 2014. Wave equation processing using finite‐difference propagators, part 2: Deghosting of marine hydrophone seismic data. Geophysics79(6), T301–T312.
    [Google Scholar]
  51. SchalkwijkK.M., WapenaarC.P.A. and VerschuurD.J., 2003. Adaptive decomposition of multicomponent ocean‐bottom seismic data into downgoing and upgoing P‐ and S‐waves. Geophysics68, 1091–1102.
    [Google Scholar]
  52. SlobE., 2009. Interferometry by deconvolution of multicomponent multioffset GPR data. IEEE Transactions on Geoscience and Remote Sensing47, 828–838.
    [Google Scholar]
  53. ThorbeckeJ.W. and DraganovD., 2011. Finite‐difference modeling experiments for seismic interferometry. Geophysics76(6), H1–H18.
    [Google Scholar]
  54. UrsinB., 1983. Review of elastic and electromagnetic wave propagation in horizontally layered media. Geophysics48, 1063–1081.
    [Google Scholar]
  55. VanBorselen R.G., FokkemaJ. and Van den BergP.2013. Wavefield decomposition based on acoustic reciprocity: theory and applications to marine acquisition. Geophysics78(2), WA41–WA54.
    [Google Scholar]
  56. Van der NeutJ., BakulinA. and AlexandrovD.2013. Acoustic wavefield separation using horizontal receiver arrays deployed at multiple depth on land. 83rd SEG meeting, Houston, USA, Expanded Abstracts, 4601–4607.
    [Google Scholar]
  57. Van der NeutJ., ElAllouche N. and WapenaarK.2010. Elastic decomposition with downhole geophones and hydrophones. 80th SEG meeting, Denver, USA, Expanded Abstracts, 1708–1713.
    [Google Scholar]
  58. Van der NeutJ. and HerrmannF.J.2012. Up/down wavefield decomposition by sparse inversion. 74th EAGE Conference & Exhibition, Copenhagen, Denmark, 4693–4698.
    [Google Scholar]
  59. VanStralen M.J.N.1997. Directional decomposition of electromagnetic and acoustic wave‐Fields‐applications in integrated optics, exploration seismics and underwater acoustics. PhD Thesis, Delft University of Technology, Netherlands.
    [Google Scholar]
  60. VirieuxJ., 1986. P‐SV wave propagation in heterogeneous media: velocity‐stress finite difference method. Geophysics51, 889–901.
    [Google Scholar]
  61. WapenaarC.P.A. and BerkhoutA.J.1989. Elastic Wavefield Extrapolation – Redatuming of Single and Multi‐Component Seismic Data. Elsevier.
    [Google Scholar]
  62. WapenaarC.P.A., DillenM.W.P. and FokkemaJ.T.2001. Reciprocity theorems for electromagnetic or acoustic one‐way wave fields in dissipative inhomogeneous media. Radio Science36, 851–863.
    [Google Scholar]
  63. WapenaarC.P.A. and GrimbergenJ.L.T., 1996. Reciprocity theorems for one‐way wavefields. Geophysical Journal International127, 169–177.
    [Google Scholar]
  64. WapenaarC.P.A. and VerschuurD.J.1996. Processing of Ocean Bottom Data: The Dolphin Project, Vol. I, pp. 6.1–6.26.
  65. WapenaarC.P.A., HerrmannP., VerschuurD.J. and BerkhoutA.J., 1990. Decomposition of multi‐component seismic data into primary P‐ and S‐wave responses. Geophysical Prospecting38, 633–661.
    [Google Scholar]
  66. WapenaarK., 1998. Reciprocity properties of one‐way propagators. Geophysics63, 1795–1798.
    [Google Scholar]
  67. WapenaarK. and FokkemaJ., 2004. Reciprocity theorems for diffusion, flow and waves. Journal of Applied Mechanics71, 145–150.
    [Google Scholar]
  68. WapenaarK., SlobE. and SniederR., 2008. Seismic and electromagnetic controlled‐source interferometry in dissipative media. Geophysical Prospecting56, 419–434.
    [Google Scholar]
  69. WapenaarK., Van der NeutJ., RuigrokE., DraganovD., HunzikerJ., SlobE. et al. 2011. Seismic interferometry by crosscorrelation and by multi‐dimensional deconvolution: a systematic comparison. Geophysical Journal International185, 1335–1364.
    [Google Scholar]
  70. WardenS., GaramboisS., JouniauxL., BritoD., SailhacP. and BordesC., 2013. Seismoelectric wave propagation numerical modelling in partially saturated materials. Geophysical Journal International194, 1498–1513.
    [Google Scholar]
  71. WhiteJ.E.1965. Seismic Waves: Radiation, Transmission, and Attenuation. McGraw‐Hill, New York.
    [Google Scholar]
  72. WoodhouseJ.H., 1974. Surface waves in a laterally varying layered structure. Geophysical Journal International37(3), 461–490.
    [Google Scholar]
  73. XuZ., JuhlinC., GudmundssonO., ZhangF., YangC., KashubinA. et al., 2012. Reconstruction of subsurface structure from ambient seismic noise: an example from Ketzin, Germany. Geophysical Journal International189, 1085–1102.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12290
Loading
/content/journals/10.1111/1365-2478.12290
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error