1887
Volume 64, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In the field of seismic interferometry, researchers have retrieved surface waves and body waves by cross‐correlating recordings of uncorrelated noise sources to extract useful subsurface information. The retrieved wavefields in most applications are between receivers. When the positions of the noise sources are known, inter‐source interferometry can be applied to retrieve the wavefields between sources, thus turning sources into virtual receivers. Previous applications of this form of interferometry assume impulsive point sources or transient sources with similar signatures. We investigate the requirements of applying inter‐source seismic interferometry using non‐transient noise sources with known positions to retrieve reflection responses at those positions and show the results using synthetic drilling noise as source. We show that, if pilot signals (estimates of the drill‐bit signals) are not available, it is required that the drill‐bit signals are the same and that the phases of the virtual reflections at drill‐bit positions can be retrieved by deconvolution interferometry or by cross‐coherence interferometry. Further, for this case, classic interferometry by cross‐correlation can be used if the source power spectrum can be estimated. If pilot signals are available, virtual reflection responses can be obtained by first using standard seismic‐while‐drilling processing techniques such as pilot cross‐correlation and pilot deconvolution to remove the drill‐bit signatures in the data and then applying cross‐correlation interferometry. Therefore, provided that pilot signals are reliable, drill‐bit data can be redatumed from surface to borehole depths using this inter‐source interferometry approach without any velocity information of the medium, and we show that a well‐positioned image below the borehole can be obtained using interferometrically redatumed reflection responses with just a simple velocity model. We discuss some of the practical hurdles that restrict the application of the proposed method offshore.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12292
2015-07-02
2024-04-19
Loading full text...

Full text loading...

References

  1. AarrestadT.V. and KyllingstadÅ. 1988. An experimental and theoretical study of a coupling mechanism between longitudinal and torsional drillstring vibrations at the bit. SPE Drilling Engineering3, 12–18.
    [Google Scholar]
  2. BakulinA. and CalvertR.2006. The virtual source method: theory and case study. Geophysics71, SI139–SI150.
    [Google Scholar]
  3. CampilloM. and PaulA.2003. Long‐range correlations in the diffuse seismic coda. Science299, 547–549.
    [Google Scholar]
  4. CurtisA., NicolsonH., HallidayD., TrampertJ. and Baptie, B.2009. Virtual seismometers in the subsurface of the Earth from seismic interferometry. Nature Geoscience2, 700–704.
    [Google Scholar]
  5. DraganovD., WapenaarK., MulderW., SingerJ. and VerdelA.2007. Retrieval of reflections from seismic background‐noise measurements. Geophysical Research Letters34, L04305.
    [Google Scholar]
  6. DraganovD., CampmanX., ThorbeckeJ., VerdelA. and WapenaarK.2009. Reflection images from ambient seismic noise. Geophysics74, A63–A67.
    [Google Scholar]
  7. DraganovD., CampmanX., ThorbeckeJ., VerdelA. and WapenaarK.2013. Seismic exploration‐scale velocities and structure from ambient seismic noise (>1 Hz). Journal of Geophysical Research: Solid Earth118, 4345–4360.
    [Google Scholar]
  8. EidsvikJ. and HokstadK.2006. Positioning drill‐bit and look‐ahead events using seismic traveltime data. Geophysics71, F79–F90.
    [Google Scholar]
  9. GerstoftP., SabraK., RouxP., KupermanW. and FehlerM.2006. Green's functions extraction and surface‐wave tomography from microseisms in Southern California. Geophysics71, SI23–SI31.
    [Google Scholar]
  10. HaldorsenJ.B., MillerD.E. and WalshJ.J.1995. Walk‐away VSP using drill noise as a source. Geophysics60, 978–997.
    [Google Scholar]
  11. LobkisO.I. and WeaverR.L.2001. On the emergence of the Green's function in the correlations of a diffuse field. The Journal of the Acoustical Society of America110, 3011–3017.
    [Google Scholar]
  12. MalusaM., PolettoF. and MirandaF.2002. Prediction ahead of the bit by using drill‐bit pilot signals and reverse vertical seismic profiling (RVSP). Geophysics67, 1169–1176.
    [Google Scholar]
  13. MehtaK., SheimanJ., SniederR. and CalvertR.2007. The virtual source method applied to Mars field OBC data for time‐lapse monitoring. SEG Expanded abstracts, 2914–2918.
  14. MillerD., HaldorsenJ. and KostovC.1990. Methods for deconvolution of unknown source signatures from unknown waveform data. U.S. Patent4922362.
    [Google Scholar]
  15. NakataN., SniederR., TsujiT., LarnerK. and MatsuokaT.2011. Shear wave imaging from traffic noise using seismic interferometry by cross‐coherence. Geophysics76, SA97–SA106.
    [Google Scholar]
  16. PaneaI., DraganovD., VidalC.A. and MocanuV.2014. Retrieval of reflections from ambient noise recorded in Mizil area, Romania. Geophysics79, Q31–Q42.
    [Google Scholar]
  17. PolettoF., CoruboloP. and ComelliP.2010. Drill‐bit seismic interferometry with and without pilot signals. Geophysical Prospecting58, 257–265.
    [Google Scholar]
  18. PolettoF., MalusaM., MirandaF. and TinivellaU.2004. Seismic while drilling by using dual sensors in drill strings. Geophysics69, 1261–1271.
    [Google Scholar]
  19. PolettoF. and MirandaF.2004. Seismic While Drilling: Fundamentals of Drill‐Bit Seismic for Exploration. Pergamon. 35.
  20. PolettoF., MirandaF., CoruboloP., SchleiferA. and ComelliP.2014. Drill‐bit seismic monitoring while drilling by downhole wired‐pipe telemetry. Geophysical Prospecting62, 702–718.
    [Google Scholar]
  21. PolettoF., RoccaF. and BertelliL.2000. Drill‐bit signal separation for RVSP using statistical independence. Geophysics65, 1654–1659.
    [Google Scholar]
  22. RectorJ. and HardageB.1992. Radiation pattern and seismic waves generated by a working roller‐cone drill bit. Geophysics57, 1319–1333.
    [Google Scholar]
  23. RectorJ. and MarionB.1991. The use of drill‐bit energy as a downhole seismic source. Geophysics56, 628–634.
    [Google Scholar]
  24. RouxP., SabraK.G., GerstoftP., KupermanW.A. and FehlerM.C.2005. P‐waves from cross‐correlation of seismic noise. Geophysical Research Letters32, L19303.
    [Google Scholar]
  25. RuigrokE., CampmanX. and WapenaarK.2011. Extraction of P‐wave reflections from microseisms. Comptes Rendus Geoscience343, 512–525.
    [Google Scholar]
  26. SabraK.G., GerstoftP., RouxP., KupermanW.A. and FehlerM.C.2005a. Extracting time‐domain Green's function estimates from ambient seismic noise. Geophysical Research Letters32, L03310.
    [Google Scholar]
  27. SabraK.G., GerstoftP., RouxP., KupermanW.A. and FehlerM.C.2005b. Surface wave tomography from microseisms in Southern California. Geophysical Research Letters32, L14311.
    [Google Scholar]
  28. ShapiroN.M. and CampilloM.2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters31, L07614.
    [Google Scholar]
  29. ShapiroN.M., CampilloM., StehlyL. and RitzwollerM.H.2005. High‐resolution surface‐wave tomography from ambient seismic noise. Science307, 1615–1618.
    [Google Scholar]
  30. SniederR.2004. Extracting the Green's function from the correlation of coda waves: a derivation based on stationary phase. Physical Review E69(4), 046610.
    [Google Scholar]
  31. SniederR., WapenaarK., and LarnerK.2006. Spurious multiples in seismic interferometry of primaries. Geophysics71, SI111–SI124.
    [Google Scholar]
  32. ThorbeckeJ. and DraganovD.2011. Finite‐difference modeling experiments for seismic interferometry. Geophysics76, H1–H18.
    [Google Scholar]
  33. ThorbeckeJ., WapenaarK. and SwinnenG.2004. Design of one‐way wavefield extrapolation operators, using smooth functions in WLSQ optimization. Geophysics69, 1037–1045.
    [Google Scholar]
  34. TonegawaT. and NishidaK.2010. Inter‐source body wave propagations derived from seismic interferometry. Geophysical Journal International183, 861–868.
    [Google Scholar]
  35. VasconcelosI. and SniederR.2008a. Interferometry by deconvolution: Part 1 ‐ Theory for acoustic waves and numerical examples. Geophysics73, S115–S128.
    [Google Scholar]
  36. VasconcelosI. and SniederR.2008b. Interferometry by deconvolution: Part 2 ‐ Theory for elastic waves and application to drill‐bit seismic imaging. Geophysics73, S129–S141.
    [Google Scholar]
  37. WapenaarK.2004. Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letters93, 254301.
    [Google Scholar]
  38. WapenaarK. and FokkemaJ.2006. Greens function representations for seismic interferometry. Geophysics71, SI33–SI46.
    [Google Scholar]
  39. XuZ., JuhlinC., GudmundssonO., ZhangF., YangC., KashubinA.et al. 2012. Reconstruction of subsurface structure from ambient seismic noise: an example from Ketzin, Germany. Geophysical Journal International189, 1085–1102.
    [Google Scholar]
  40. YangY., RitzwollerM.H., LevshinA.L. and ShapiroN.M.2007. Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International168, 259–274.
    [Google Scholar]
  41. ZhanZ., NiS., HelmbergerD.V. and ClaytonR.W.2010. Retrieval of Moho‐reflected shear wave arrivals from ambient seismic noise. Geophysical Journal International182, 408–420.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12292
Loading
/content/journals/10.1111/1365-2478.12292
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Borehole geophysics; Imaging; Noise; Seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error