1887
Volume 63, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We present a numerical study for 3D time‐lapse electromagnetic monitoring of a fictitious CO sequestration using the geometry of a real geological site and a suite of suitable electromagnetic methods with different source/receiver configurations and different sensitivity patterns. All available geological information is processed and directly implemented into the computational domain, which is discretized by unstructured tetrahedral grids. We thus demonstrate the performance capability of our numerical simulation techniques.

The scenario considers a CO injection in approximately 1100 m depth. The expected changes in conductivity were inferred from preceding laboratory measurements. A resistive anomaly is caused within the conductive brines of the undisturbed reservoir horizon. The resistive nature of the anomaly is enhanced by the CO dissolution regime, which prevails in the high‐salinity environment. Due to the physicochemical properties of CO, the affected portion of the subsurface is laterally widespread but very thin.

We combine controlled‐source electromagnetics, borehole transient electromagnetics, and the direct‐current resistivity method to perform a virtual experiment with the aim of scrutinizing a set of source/receiver configurations with respect to coverage, resolution, and detectability of the anomalous CO plume prior to the field survey. Our simulation studies are carried out using the 3D codes developed in our working group. They are all based on linear and higher order Lagrange and Nédélec finite‐element formulations on unstructured grids, providing the necessary flexibility with respect to the complex real‐world geometry. We provide different strategies for addressing the accuracy of numerical simulations in the case of arbitrary structures.

The presented computations demonstrate the expected great advantage of positioning transmitters or receivers close to the target. For direct‐current geoelectrics, 50% change in electric potential may be detected even at the Earth's surface. Monitoring with inductive methods is also promising. For a well‐positioned surface transmitter, more than 10% difference in the vertical electric field is predicted for a receiver located 200 m above the target. Our borehole transient electromagnetics results demonstrate that traditional transient electromagnetics with a vertical magnetic dipole source is not well suited for monitoring a thin horizontal resistive target. This is due to the mainly horizontal current system, which is induced by a vertical magnetic dipole.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12299
2015-09-30
2019-12-11
Loading full text...

Full text loading...

References

  1. AfanasjewM., BörnerR.‐U., EiermannM., ErnstO. and SpitzerK.2013. Efficient three‐dimensional time domain TEM simulation using finite elements, a nonlocal boundary condition, multigrid, and rational Krylov subspace methods. 5th International Symposium on Three‐Dimensional Electromagnetics, Sapporo, Japan, Extended Abstracts, 4 p.
  2. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers146, 54–62.
    [Google Scholar]
  3. BennisC., SassiW., FaureJ. and ChehadeF.H.1996. One more step in Gocad stratigraphic grid generation: taking into account faults and pinchouts. European 3‐D Reservoir Modelling Conference, Society of Petroleum Engineers.
  4. BorchertH.1940. Die Salzlagerstätten des Deutschen Zechsteins, ein Beitrag zur Entstehungozeaner Salzablagerungen. Technical Report, Reichsamt für Bodenforschung, Archiv Lagerstättenforschung67, 196.
    [Google Scholar]
  5. BörnerJ.H., HerdegenV., RepkeJ.‐U. and SpitzerK.2013. The impact of CO2 on the electrical properties of water bearing porous media ‐ laboratory experiments with respect to carbon capture and storage. Geophysical Prospecting61, 446–460.
    [Google Scholar]
  6. BörnerJ.H., HerdegenV., RepkeJ.‐U. and SpitzerK.2015. The electrical conductivity of CO2‐bearing pore waters at elevated pressure and temperature: A laboratory study and its implications in CO2 storage monitoring and leakage detection. Geophysical Journal International, DOI: 10.1093/gji/ggv331, in press.
  7. CaumonG.2010. Towards stochastic time varying geological modeling. Mathematical Geosciences42, 565–569.
    [Google Scholar]
  8. CoggonJ.H.1971. Electromagnetic and electrical modelling by the finite element method. Geophysics36, 132–155.
    [Google Scholar]
  9. ColomboD. and McNeiceG.W.2013. Quantifying surface‐to‐reservoir electromagnetics for waterflood monitoring in a Saudi Arabian carbonate reservoir. Geophysics78, E281–E297.
    [Google Scholar]
  10. ConstableS. and WeissC.J.2006. Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modeling. Geophysics71, G43–G51.
    [Google Scholar]
  11. De CasteljauP.1959. Outillages methodes calcul. Technical Report A, Citroen, Paris.
  12. DeyA. and MorrisonH.F.1979. Resistivity modeling for arbitrarily shaped three‐dimensional structures. Geophysics44, 753–780.
    [Google Scholar]
  13. EidesmoT., EllingsrudS., MacGregorL.M., ConstableS., SinhaM.C., JohansonS.E.et al. 2002. Sea bed logging SBL, a new method for remote and direct identification of hydrocarbon filled layers in deep water areas. First Break20, 144–152.
    [Google Scholar]
  14. EiermannM. and ErnstO.G.2006. A restarted Krylov subspace method for the evaluation of matrix functions. SIAM Journal on Numerical Analysis44, 2481–2504.
    [Google Scholar]
  15. ElbrachtJ., MeyerR. and ReutterE.2010. Hydrogeologische Räume und Teilräume in Niedersachsen. GeoBerichte 3, Landesamt für Bergbau, Energie und Geologie, 117 p.
  16. Franke‐BörnerA.2013. Three‐dimensional finite element simulation of magnetotelluric fields on unstructured grids ‐ on the efficient formulation of the boundary value problem . PhD thesis, Technical University Bergakademie Freiberg, Germany.
  17. FuldaE.1937. Die Entstehung der Zechsteinsalze nach der Großfluthypothese von Martin Wilfarth. Kali1, 1–3.
    [Google Scholar]
  18. GirardJ.‐F., CoppoN., RohmerJ., BourgeoisB., NaudetV. and Schmidt‐HattenbergerC.2011. Time‐lapse CSEM monitoring of the Ketzin (Germany) CO2 injection using 2× MAM configuration. Energy Procedia4, 3322–3329.
    [Google Scholar]
  19. GoldmanY., HubansC., NicoletisS. and SpitzS.1986. A finite‐element solution for the transient electromagnetic response of an arbitrary two‐dimensional resistivity distribution. Geophysics51, 1450–1461.
    [Google Scholar]
  20. GüttelS. 2010. Rational Krylov methods for operator functions . PhD thesis, Faculty of Mathematics and Informatics, Technical University Bergakademie Freiberg, Germany.
  21. HeunischC., CaspersG., ElbrachtJ., LangerA., RöhlingH.‐G., SchwarzC. et al. 2007. Erdgeschichte von Niedersachsen ‐ Geologie und Landschaftsentwicklung. GeoBerichte 6, Landesamt für Bergbau, Energie und Geologie, 85 p.
  22. HitchonB.
    (ed). 1996. Aquifer Disposal of Carbon Dioxide. Geoscience Publishing Ltd.
    [Google Scholar]
  23. HördtA., AndrieuxP., NeubauerF., RüterH. and VozoffK.2000. A first attempt at monitoring underground gas storage by means of time‐lapse multichannel transient electromagnetic. Geophysical Prospecting48, 489–509.
    [Google Scholar]
  24. HoverstenG.H., ConstableS. and MorrisonH.F.2000. Marine magnetotellurics for base salt mapping: Gulf of Mexico field‐test at the Gemini structure. Geophysics65, 1476–1488.
    [Google Scholar]
  25. IPCC
    IPCC2005. IPCC Special Report on Carbon Dioxide Capture and Storage . Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  26. KiesslingD., Schmidt‐HattenbergerC., SchuettH., SchillingF., KruegerK., SchoebelA.et al. 2010. Geoelectrical methods for monitoring geological CO2 storage: first results from cross‐hole and surface ‐ downhole measurements from the CO2SINK test site at Ketzin (Germany). International Journal of Greenhouse Gas Control4, 816–826.
    [Google Scholar]
  27. KnödelK., KrummelH. and LangeG.2005. 5.3. In: Gleichstromgeoelektrik, 2nd edn, Vol. 3 of Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten/BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, 128–173. Springer‐Verlag Berlin Heidelberg.
    [Google Scholar]
  28. LBEG
    LBEG2013. NIBIS® Mapserver des Landesamtes für Bergbau, Energie und Geologie Niedersachsen, http://nibis.lbeg.de/cardomap3/. (retrieved February 18, 2013).
  29. LotzeF.1934. Der Gang der Salzabscheidungen im innersten Teil des deutschen Zechstein‐Beckens (Gebiet von Lehrte und Hannover). Kali19, 237–239.
    [Google Scholar]
  30. MalletJ.L.1989. Discrete smooth interpolation. ACM‐Transactions on Graphics8, 121–144.
    [Google Scholar]
  31. MalletJ.L.2002. Geomodeling. Oxford University Press.
    [Google Scholar]
  32. MalletJ.L.2008. Numerical Earth Models. EAGE Publications BV.
    [Google Scholar]
  33. McNeillJ.D.1994. Principles and application of time domain electromagnetic techniques for resistivity sounding. Technical Note, Geonics Limited.
  34. MunkholmM. and AukenE.1996. Electromagnetic noise contamination on transient electromagnetic soundings in culturally disturbed environments. Journal of Environmental and Engineering Geophysics1, 119–127.
    [Google Scholar]
  35. NabighianM.1979. Quasi‐static transient response of a conducting half‐space ‐ an approximate representation. Geophysics44, 1700–1705.
    [Google Scholar]
  36. OdenJ. and PrudhommeS.2001. Goal‐oriented error estimation and adaptivity for the finite element method. Computers & Mathematics with Applications41, 735–756.
    [Google Scholar]
  37. RenZ., KalscheuerT., GreenhalghS. and MaurerH.2013. A goal‐oriented adaptive finite‐element approach for plane wave 3‐D electromagnetic modelling. Geophysical Journal International194, 700–718.
    [Google Scholar]
  38. RückerC., GüntherT. and SpitzerK.2006. Three‐dimensional modelling and inversion of DC resistivity data incorporating topography ‐ I. Modelling. Geophysical Journal International166, 495–505.
    [Google Scholar]
  39. Scheck‐WenderothM. and LamarcheJ.2005. Crustal memory and basin evolution in the central European basin system ‐ new insights from a 3D structural model. Tectonophysics397, 143–165.
    [Google Scholar]
  40. SchönJ.1996. Physical Properties of Rocks ‐ Fundamentals and Principles of Petrophysics, 1st ed, Vol. 18 of Handbook of Geophysical Exploration. Pergamon.
    [Google Scholar]
  41. SchwarzbachC.2009. Stability of finite element solutions to Maxwell's equations in frequency domain . PhD thesis, Technical University Bergakademie Freiberg, Germany.
  42. SchwarzbachC., BörnerR.‐U. and SpitzerK.2011. Three‐dimensional adaptive higher order finite element simulation for geo‐electromagnetics ‐ a marine CSEM example. Geophysical Journal International187, 63–74.
    [Google Scholar]
  43. SeherT. and TezkanB.2007. Radiomagnetotelluric and direct current resistivity measurements for the characterization of conducting soils. Journal of Applied Geophysics63, 35–45.
    [Google Scholar]
  44. SpitzerK. and WurmstichB.1999. Speed and accuracy in 3D resistivity modelling. In: Three‐Dimensional Electromagnetics, Vol. 7 of Geophysical Developments, 161–176. Society of Exploration Geophysicists.
    [Google Scholar]
  45. StilleH.1932. Zur Paläogeographie des Nordöstlichen Niedersachsens. Weidmann, Berlin.
    [Google Scholar]
  46. StreichR. and BeckenM.2011. Sensitivity of controlled‐source electromagnetic fields in planarly layered media. Geophysical Journal International187, 705–728.
    [Google Scholar]
  47. StreichR., BeckenM. and RitterO.2013. Robust processing of noisy land‐based controlled‐source electromagnetic data. Geophysics78, E237–E247.
    [Google Scholar]
  48. VilamajóE., QueraltP., LedoJ. and MarcuelloA.2013. Feasibility of monitoring the Hontomín (Burgos, Spain) CO2 storage site using deep EM source. Surveys in Geophysics34, 441–461.
    [Google Scholar]
  49. WeißflogJ., EckhoferF., BörnerR.‐U., EiermannM., ErnstO.G. and SpitzerK.2012. 3D DC resistivity FE modelling and inversion in view of a parallelised Multi‐EM inversion approach. 21st Electromagnetic Induction Workshop, Darwin, Australia, Extended Abstracts, 4 p.
  50. WiriantoM., MulderW.A. and SlobE.C.2010. A feasibility study of land CSEM reservoir monitoring in a complex 3‐D model. Geophysical Journal International181, 741–755.
    [Google Scholar]
  51. WyciskP., HubertT., GosselW. and NeumannC.2009. High‐resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megasites. Computers and Geosciences35, 165–182.
    [Google Scholar]
  52. ZehnerB., BörnerJ.H., GörzI. and SpitzerK.2015. Workflows for generating tetrahedral meshes for finite element simulations on complex geological structures. Computers and Geosciences79, 105–117.
    [Google Scholar]
  53. ZhdanovM.S., EndoM., BlackN., SpanglerL., FairweatherS., HibbsA.et al. 2013. Electromagnetic monitoring of CO2 sequestration in deep reservoirs. First Break31, 71–78.
    [Google Scholar]
  54. ZieglerP.A.1982. Geological Atlas of Western and Central Europe. Shell International Petroleum Maatschappij u. a., Den Haag.
    [Google Scholar]
  55. ZiolkowskiA., ParrR., WrightD., NocklesV., LimondC., MorrisE. and LinfootJ.2010. Multi‐transient electromagnetic repeatability experiment over the North Sea Harding field. Geophysical Prospecting58, 1159–1176.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12299
Loading
/content/journals/10.1111/1365-2478.12299
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error