1887
Volume 63, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

This paper presents the first controlled‐source electromagnetic survey carried out in the German North Sea with a recently developed seafloor‐towed electrical dipole–dipole system, i.e., HYDRA II. Controlled‐source electromagnetic data are measured, processed, and inverted in the time domain to estimate an electrical resistivity model of the sub‐seafloor. The controlled‐source electromagnetic survey targeted a shallow, phase‐reversed, seismic reflector, which potentially indicates free gas. To compare the resistivity model to reflection seismic data and draw a combined interpretation, we apply a trans‐dimensional Bayesian inversion that estimates model parameters and uncertainties, and samples probabilistically over the number of layers of the resistivity model. The controlled‐source electromagnetic data errors show time‐varying correlations, and we therefore apply a non‐Toeplitz data covariance matrix in the inversion that is estimated from residual analysis. The geological interpretation drawn from controlled‐source electromagnetic inversion results and borehole and reflection seismic data yield resistivities of ∼1 Ωm at the seafloor, which are typical for fine‐grained marine deposits, whereas resistivities below ∼20 mbsf increase to 2–4 Ωm and can be related to a transition from fine‐grained (Holocene age) to unsorted, coarse‐grained, and compacted glacial sediments (Pleistocene age). Interface depths from controlled‐source electromagnetic inversion generally match the seismic reflector related to the contrast between the different depositional environments. Resistivities decrease again at greater depths to ∼1 Ωm with a minimum resistivity at ∼300 mbsf where a seismic reflector (that marks a major flooding surface of late Miocene age) correlates with an increased gamma‐ray count, indicating an increased amount of fine‐grained sediments. We suggest that the grain size may have a major impact on the electrical resistivity of the sediment with lower resistivities for fine‐grained sediments. Concerning the phase‐reversed seismic reflector that was targeted by the survey, controlled‐source electromagnetic inversion results yield no indication for free gas below it as resistivities are generally elevated above the reflector. We suggest that the elevated resistivities are caused by an overall decrease in porosity in the glacial sediments and that the seismic reflector could be caused by an impedance contrast at a thin low‐velocity layer. Controlled‐source electromagnetic interface depths near the reflector are quite uncertain and variable. We conclude that the seismic interface cannot be resolved with the controlled‐source electromagnetic data, but the thickness of the corresponding resistive layer follows the trend of the reflector that is inclined towards the west.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12308
2015-09-27
2024-04-18
Loading full text...

Full text loading...

References

  1. AgostinettiN.P. and MalinvernoA.2010. Receiver function inversion by trans‐dimensional Monte Carlo sampling. Geophysical Journal Internal181, 858–872.
    [Google Scholar]
  2. AndréisD. and MacGregorL.2008. Controlled‐source electromagnetic sounding in shallow water: Principles and applications. Geophysics73(1), F21–F32.
    [Google Scholar]
  3. ArfaiJ., JaehneF., LutzR., ReinhardtL., ThöleH. and WirthH.2011. Datengrundlage, Arbeitskonzepte und Erste Vorlaeufige Ergebnisse zum Projekt Geopotenzial Deutsche Nordsee (2009‐2010).
  4. BaermannD.M.A. and WüstenhagenK.1985. Ingenieurgeologische Untersuchungen an Geschiebemergeln im Hamburger Raum. In: Ingenieurgeologische Probleme im Grenzbereich zwischen Locker‐und Festgesteinen, pp. 434–448. Springer.
    [Google Scholar]
  5. BodinT. and SambridgeM.2009. Seismic tomography with the reversible jump algorithm. Geophysical Journal International178, 1411–1436.
    [Google Scholar]
  6. BodinT., SambridgeM., TkalcicH., ArroucauP., GallagherK. and RawlinsonN.2012. Transdimensional inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research117, 24.
    [Google Scholar]
  7. BulandA. and KolbjørnsenO.2012. Bayesian inversion of CSEM and magnetotelluric data. Geophysics77(1), E33–E42.
    [Google Scholar]
  8. CheesmanS.J., EdwardsR.N. and ChaveA.D.1987. On the theory of sea floor conductivity mapping using transient electromagnetic systems. Geophysics52, 204–217.
    [Google Scholar]
  9. ChenJ., HoverstenG.M., VascoD., RubinY. and HouZ.2007. A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data. Geophysics72(2), WA85–WA95.
    [Google Scholar]
  10. ConstableS. and SrnkaL.J.2007. An introduction to marine controlled‐source electromagnetic methods for hydrocarbon exploration. Geophysics72(2), WA3–WA12.
    [Google Scholar]
  11. ConstableS.C.2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics75(5), 75A67–75A81.
    [Google Scholar]
  12. ConstableS.C., ParkerR.L. and ConstableC.G.1987. Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics52, 289–300.
    [Google Scholar]
  13. ConstableS.C. and WeissC.J.2006. Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling. Geophysics71(2), G43–G51.
    [Google Scholar]
  14. CoxC.1980. Electromagnetic induction in the oceans and inferences on the constitution of the earth. Geophysical Surveys4, 137–156.
    [Google Scholar]
  15. DammV., AdamJ., BargelohO., BehrensT., BlockM., DemirU.et al. 2012. 3D‐Test North Sea, Geopotenzial Deutsche Nordsee (GPDN) ‐ CSEM, Cruise No. 88, Leg 1, Aug. 10 ‐ Sept. 6, Bremerhaven ‐ Bremerhaven. Meteor‐Berichte, Leitstelle Deutsche Forschungsschiffe, Institut fuer Meereskunde der Universitaet Hamburg.
  16. DenisonD.G.T., HolmesC.C., MallickB.K. and SmithA.F.M.2002. Bayesian Methods for Nonlinear Classification and Regression 1st edn. Wiley.
    [Google Scholar]
  17. DettmerJ. and DossoS.E.2012. Trans‐dimensional matched‐field geoacoustic inversion with hierarchical error models and interacting Markov chains. Journal of the Acoustical Society of America132(4).
    [Google Scholar]
  18. DettmerJ., DossoS.E. and HollandC.W.2010. Trans‐dimensional geoacoustic inversion. Journal of the Acoustical Society of America128(6), 3393–3405.
    [Google Scholar]
  19. DettmerJ., DossoS.E. and HollandC.W.2011. Sequential trans‐dimensional Monte Carlo for range‐dependent geoacoustic inversion. Journal of the Acoustical Society of America129(4), 1794–1806.
    [Google Scholar]
  20. DettmerJ., HollandC.W. and DossoS.E.2013. Transdimensional uncertainty estimation for dispersive seabed sediments. Geophysics78(3), WB63–WB76.
    [Google Scholar]
  21. DossoS.E. and DettmerJ.2011. Bayesian matched‐field geoacoustic inversion. Inverse Problems27, 23.
    [Google Scholar]
  22. DossoS.E., DettmerJ., SteiningerG. and HollandC.W.2014. Efficient trans‐dimensional Bayesian inversion for geoacoustic profile estimation. Inverse Problems30, 30.
    [Google Scholar]
  23. DossoS.E., HollandC.W. and SambridgeM.2012. Parallel tempering for strongly nonlinear geoacoustic inversion. Journal of the Acoustical Society of America132(5), 3030–3040.
    [Google Scholar]
  24. DossoS.E., NielsenP.L. and WilmutM.J.2006. Data error covariance in matched‐field geoacoustic inversion. Journal of the Acoustical Society of America119(1).
    [Google Scholar]
  25. DossoS.E. and WilmutM.J.2008. Uncertainty estimation in simultaneous Bayesian tracking and environmental inversion. Journal of the Acoustical Society of America124(1), 82–97.
    [Google Scholar]
  26. EdwardsR.N.1997. On the resource evaluation of marine gas hydrate deposits using sea‐floor transient electric dipole‐dipole methods. Geophysics62(1), 63–74.
    [Google Scholar]
  27. EdwardsR.N.2005. Marine controlled source electromagnetics: principles, methodologies, future commercial applications. In: Surveys in Geophysics, vol. 26, pp. 675–700. Springer, Berlin, Heidelberg, New York.
    [Google Scholar]
  28. ErchulR.A.1972. The use of electrical resistivity to determine porosity of marine sediments, University of Rhode Island, USA.
  29. GehrmannR.A.S., SchwalenbergK., RiedelM., DossoS.E. and SpenceG.D.2015. Bayesian inversion of controlled source electromagnetic data at the upper slope offshore Vancouver Island. in preparation.
  30. GeyerC.J.1991. Markov chain Monte Carlo maximum likelihood. In: Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, pp. 156–163.
  31. GeyerC.J. and MøllerJ.1994. Simulation procedures and likelihood inference for spatial point processes. Scandinavian Journal of Statistics21(4), 359–373.
    [Google Scholar]
  32. GeyerC.J., RobertC., CasellaG., FanY., SissonS.A., RosenthalJ.et al. 2011. Handbook of Markov Chain Monte Carlo. Chapman and Hall/CRC.
    [Google Scholar]
  33. GreenP.J.1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika82(4), 711–732.
    [Google Scholar]
  34. GreenP.J.2003. Trans‐dimensional Markov chain Monte Carlo. In: Highly Structured Stochastic Systems, Oxford Statistical Science Series (eds. P.J.Green , N.L.Hjort and S.Richardson ), pp. 179–198. Oxford University Press, Oxford.
    [Google Scholar]
  35. GuoR., DossoS.E., LiuJ., DettmerJ. and TongX.2011. Non‐linearity in Bayesian 1‐D magnetotelluric inversion. Geophysical Journal International185(2), 663–675.
    [Google Scholar]
  36. HamiltonE.L.1970. Sound velocity and related properties of marine sediments, North Pacific. Journal of Geophysical Research75(23), 4423–4446.
    [Google Scholar]
  37. HamiltonE.L.1972. Compressional‐wave attenuation in marine sediments. Geophysics37(4), 620–646.
    [Google Scholar]
  38. HeppD.A., HebbelnD., KreiterS., KeilH., BathmannC. and T.MörzJ.E.2012. An east‐west‐trending Quaternary tunnel valley in the south‐eastern North Sea and its seismic‐sedimentological interpretation. Journal of Quaternary Sciences27, 844–853.
    [Google Scholar]
  39. JonesE.J.W.1999. Marine Geophysics. John Wiley and Sons, Ltd.
    [Google Scholar]
  40. JørgensenF., SandersenP., AukenE., Lykke‐AndersenH. and SørensenK.I.2003. Contributions to the geological mapping of Mors, Denmark: A study based on a large‐scale TEM survey. Bulleting of the Geological Society of Denmark57, 167–178.
    [Google Scholar]
  41. KeilH. and HeppD.A.2013. Tracing the Holocene transgression of the North Sea in the German Bight. RV Heincke HE‐405, Bremerhaven‐Bremerhaven, June 27–July 13 2013. Marum ‐ Centre for Marine Environmental Sciences.
  42. KeyK.2009. 1D inversion of multicomponent, multifrequency marine CSEM data: methodology and synthetic studies for resolving thin resistive layers. Geophysics74(2), F9–F20.
    [Google Scholar]
  43. KirschR., BurschilT., RoeloffsR., KetelsenH., ScheerW., SteinmannF.et al. 2012. Der Untergrund von Föhr: Geologie, Grundwasser und Erdwaerme. Ergebnisse des INTERREG‐Projektes CLIWAT. Tech. rep., Leibniz Institute for Applied Geophysics and State Agency for Agriculture, Environment and Rural Areas, Germany.
  44. KudraßH.R., BönnemannC., GaedickeC., LadageS., NebenS., ReinhardtL.et al. 2003. Cruise report, BGR03‐AUR Nordsee, MV‐Aurelia, September 16–October 9, 2003. Federal Institute for Geoscience and Natural Resources.
  45. MacGregorL.M., AndreisD., TomilinsonJ. and BarkerN.2006. Controlled‐source electromagnetic imaging on the Nuggets‐1 reservoir. The Leading Edge25.
    [Google Scholar]
  46. MalinvernoA.2002. Parsimonious Bayesian Markov chain Monte Carlo inversion in a non linear geophysical problem. Geophysical Journal International151, 675–688.
    [Google Scholar]
  47. MasseyF.J.1951. The Kolmogorov‐Smirnov test for goodness of fit. Journal of American Statistical Association46, 68–78.
    [Google Scholar]
  48. MinsleyB.J.2011. A trans‐dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency‐domain electromagnetic data. Geophysical Journal International187(1), 252–272.
    [Google Scholar]
  49. MoghadasD., EngelsM. and SchwalenbergK.2015. 1D joint multi‐offset inversion of time‐domain marine controlled source electromagnetic data. Geophysical Prospecting63(6), 1440–1460.
    [Google Scholar]
  50. RasmussenE.S.2004. Stratigraphy and depositional evolution of the uppermost Oligocene ‐ Miocene succession in western Denmark. Bulletin of the Geological Society of Denmark51, 89–109.
    [Google Scholar]
  51. RayA., AlumbaughD.L., HoverstenG.M. and KeyK.2013a. Robust and accelerated Bayesian inversion of marine controlled‐source electromagnetic data using parallel tempering. Geophysics78(6), E271–E280.
    [Google Scholar]
  52. RayA. and KeyK.2012. Bayesian inversion of marine CSEM data with a trans‐dimensional self parametrizing algorithm. Geophysical Journal International191, 1135–1151.
    [Google Scholar]
  53. RayA., KeyK., BodinT., MyerD. and ConstableS.2014. Bayesian inversion of marine CSEM data from the Scarborough gas field using a transdimensional 2‐D parametrization. Geophysical Journal International199(3), 1847–1860.
    [Google Scholar]
  54. RayA., KeyK. and BodinT.2013b. Hierarchical Bayesian inversion of marine CSEM data over the Scarborough gas field‐a lesson in correlated noise. SEG Annual Meeting, Houston, USA. Society of Exploration Geophysicists.
  55. Rosas‐CarbajalM., LindeN., KalscheuerT. and VrugtJ.A.2013. Two‐dimensional probabilistic inversion of plane‐wave electromagnetic data: methodology, model constraints and joint inversion with electrical resistivity data. Geophysical Journal International, ggt482.
    [Google Scholar]
  56. SambridgeM., BodinT., GallagherK. and TkalcicH.2013. Transdimensional inference in the geosciences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences371(1984), 20110547.
    [Google Scholar]
  57. SambridgeM., GallagherK., JacksonA. and RickwoodP.2006. Trans‐dimensional inverse problems, model comparison and the evidence. Geophysical Journal International167, 528–542.
    [Google Scholar]
  58. SchollC.2005. The influence of multidimensional structures on the interpretation of LOTEM data with one‐dimensional models and the application to data from Israel. Ph.D. thesis, University of Cologne, Germany.
  59. SchollC.2010. Resolving an onshore gas‐hydrate layer with long‐offset transient electromagnetics (LOTEM). In: Geophysical Characterization of Gas Hydrates (eds. M.Riedel , E.C.Willoughby and S.Chopra ), pp. 149–162. Society of Exploration Geophysicists.
    [Google Scholar]
  60. SchwalenbergK. and EngelsM.2012a. Marine controlled source electromagnetic methods for gas hydrate assessment: Latest results from the Black Sea and the Hikurangi Margin, NZ. 21st Workshop on Electromagnetic Induction in the Earth, Darwin, Australia, July 25‐31, 2012, Extended Abstracts.
  61. SchwalenbergK. and EngelsM.2012b. Marine controlled source electromagnetic methods for gas hydrate assessment: New instrumentation and first results from the Black Sea test cruise. In: Protokoll über das 24. Schmucker‐Weidelt‐Kolloquium für Elektromagnetische Tiefenforschung, Neustadt Weinstraβe, Germany, September 19–23, 2011, pp. 239–249.
  62. SchwalenbergK., EngelsM., MirR.A. and of M88/2” S.P. 2012. Geopotenzial Deutsche Nordsee (GPDN) ‐ CSEM, Cruise No. 88, Leg 2, Sept. 08‐22, Bremerhaven ‐ Bremerhaven. Meteor‐Berichte, Leitstelle Deutsche Forschungsschiffe, Institut für Meereskunde der Universität Hamburg.
  63. SchwalenbergK., HaeckelM., PoortJ. and JegenM.2010. Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: Results from Opouawe Bank, Hikurangi Margin, New Zealand. Marine Geology272(1–4), 89–98. doi:10.1016/j.margeo.2009.07.006.
    [Google Scholar]
  64. SørensenJ.C., GregersenU., BreinerM. and MichelsenO.1997. High‐frequency sequence stratigraphy of Upper Cenozoic deposits in the central and southeastern North Sea areas. Marine and Petroleum Geology14(2), 99–123.
    [Google Scholar]
  65. SwidinskyA. and EdwardsR.N.2010. The transient electromagnetic response of a resistive sheet: extension to three dimensions. Geophysical Journal International182, 663–674.
    [Google Scholar]
  66. VinkA., SteffenH., ReinhardtL. and KaufmannG.2007. Holocene relative sea‐level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quaternary Science Reviews26(25–28), 3249–3275. dx.doi.org/10.1016/j.quascirev.2007.07.014.
    [Google Scholar]
  67. WardS.H. and HohmannG.W.1988. Electromagnetic theory for geophysical applications. In: Electromagnetic Methods in Applied Geophysics, Vol. 1 (ed. M.N.Nabighian ), pp. 131–313. Society of Exploration Geophysicists.
    [Google Scholar]
  68. WeideltP.2007. Guided waves in marine CSEM. Geophysical Journal International171, 153–176.
    [Google Scholar]
  69. WeissC.J.2007. The fallacy of the “shallow‐water problem” in marine CSEM exploration. Geophysics72(6), A93–A97.
    [Google Scholar]
  70. ZiolkowskiA., ParrR., WrightD., NocklesV., LimondC., MorrisE.et al., 2010. Multi‐transient electromagnetic repeatability experiment over the North Sea Harding field. Geophysical Prospecting58, 1159–1176.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12308
Loading
/content/journals/10.1111/1365-2478.12308
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error