1887
Volume 63, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

A multichannel borehole‐to‐surface controlled‐source electromagnetic experiment was carried out at the onshore CO storage site of Hontomín (Spain). The electromagnetic source consisted of a vertical electric dipole located 1.5 km deep, and the electric field was measured at the surface. The subsurface response has been obtained by calculating the transfer function between the transmitted signal and the electric field at the receiver positions. The dataset has been processed using a fast processing methodology, appropriate to be applied on controlled‐source electromagnetics (CSEM) data with a large signal‐to‐noise ratio. The dataset has been analysed in terms of data quality and repeatability errors, showing data with low experimental errors and good repeatability. We evaluate if the induction of current along the casing of the injection well can reproduce the behaviour of the experimental data.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12331
2015-10-29
2020-05-30
Loading full text...

Full text loading...

References

  1. AlcaldeJ., MartíD., CalahorranoA., MarzanI., AyarzaP., CarbonellR.et al. 2013. Active seismic characterization experiments of the Hontomín research facility for geological storage of CO2, Spain. International Journal of Greenhouse Gas Control19, 785–795.
    [Google Scholar]
  2. AlcaldeJ., MarzanI., SauraE., MartíD., AyarzaP., JuhlinC.et al. 2014. 3D geological characterization of the Hontomín CO2 storage site, Spain: Multidisciplinary approach from seismic, well‐log and regional data. Tectonophysics627, 6–25.
    [Google Scholar]
  3. BourgeoisB. and GirardJ.F.2010. First modelling results of the EM response of a CO2 storage in the Paris basin. Oil & Gas Science and Technology ‐ Rev. IFP65(4), 597–614.
    [Google Scholar]
  4. BhuyianA.H., LandrøM. and JohansenE.2012. 3D CSEM modeling and time‐lapse sensitivity analysis for subsurface CO2 storage. Geohpysics77(5), E343–E355.
    [Google Scholar]
  5. ChakravartiI.M., LahaR.G., and RoyJ.1967. Handbook of Methods of Applied Statistics, VolumeI, pp. 392–394. John Wiley and Sons.
    [Google Scholar]
  6. ColomboD., McNeiceG., Sandoval CurielE. and FoxA.2013. Full tensor CSEM and MT for subsalt structural imaging in the Red Sea: implications for seismic and electromagnetic integration. The Leading Edge32(4), 436–449.
    [Google Scholar]
  7. ColomboD. and McNeiceG.W.2013. Quantifying surface‐to‐reservoir electromagnetics for waterflood monitoring in a Saudi Arabian carbonate reservoir. Geophysics78(6), E281–E297.
    [Google Scholar]
  8. ConstableS.2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics75(5), 75A67–75A81.
    [Google Scholar]
  9. CuevasN.2012. Casing effect in borehole–surface (surface–borehole) EM fields. 74th EAGE Conference, Copenhagen, Denmark, Extended Abstracts.
  10. EscalasM., QueraltP., LedoJ. and MarcuelloA.2013. Polarisation analysis of magnetotelluric time series using a wavelet‐based scheme: a method for detection and characterisation of cultural noise sources. Physics of the Earth and Planetary Interiors218, 31–50.
    [Google Scholar]
  11. GotoT.N.2014. Recent advances of marine EM exploration—From shallow water environmental studies to deeper mantle imaging. 22nd EM Induction Workshop, Weimar, Germany.
  12. KaufmanA.A.1990. The electrical field in a borehole with a casing. Geophysics55(1), 29–38.
    [Google Scholar]
  13. KeyK.2009. 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers. Geophysics74(2), F9–F20.
    [Google Scholar]
  14. KeyK.2012. Marine electromagnetic studies of seafloor resources and tectonics. Surveys in Geophysics33, 135–167.
    [Google Scholar]
  15. KongF.N., RothF., OlsenP.A. and StalheimS.O.2009. Casing effects in the sea‐to‐borehole electromagnetic method. Geophysics74(5), F77–F87.
    [Google Scholar]
  16. LienM. and MannsethT.2008. Sensitivity study of marine CSEM data for reservoir production monitoring. Geophysics73(4), F151–F163.
    [Google Scholar]
  17. McGregorL., BouchraraS., TomlinsonJ., StreckerU., FanJ., RanX.et al. 2012. Integrated analysis of CSEM, seismic and well log data for prospect appraisal: a case study from West Africa. First Break30(2), 43–48.
    [Google Scholar]
  18. MyerD., ConstableS. and KeyK.2011. Broad‐band waveforms and robust processing for marine CSEM surveys. Geophysical Journal International184, 689–698.
    [Google Scholar]
  19. OgayaX., LedoJ., QueraltP., MarcuelloA. and QuintàA.2013. First geoelectrical image of the subsurface of the Hontomín site (Spain) for CO2 geological storage: a magnetotelluric 2D characterization. International Journal of Greenhouse Gas Control13, 168–179.
    [Google Scholar]
  20. OgayaX., QueraltP., LedoJ., MarcuelloA. and JonesA.G.2014. Geoelectrical baseline model of the subsurface of the Hontomín site (Spain) for CO2 geological storage in a deep saline aquifer: A 3D magnetotelluric characterisation. International Journal of Greenhouse Gas Control27, 120–138.
    [Google Scholar]
  21. OrangeA., KeyK. and ConstableS.2009. The feasibility of reservoir monitoring using time‐lapse marine CSEM. Geophysics74(2), F21–F29.
    [Google Scholar]
  22. PuzyrevV., KoldanJ., de la PuenteJ., HouzeauxG., VázquezM. and CelaJ.M.2013. A parallel finite‐element method for three‐dimensional controlled‐source electromagnetic forward modelling. Geophysical Journal International193(2), 678–693.
    [Google Scholar]
  23. RondeleuxB. and SpitzS.2010. Feasibility of EM monitoring ‐ acquisition and inversion. 72nd EAGE Conference, Barcelona, Spain, Extended Abstract.
  24. SchamperC., RejibaF., TabbaghA. and SpitzS.2011. Theoretical analysis of long offset time‐lapse frequency domain controlled source electromagnetic signals using the method of moments: application to the monitoring of a land oil reservoir. Journal of Geophysical Research116, B03101.
    [Google Scholar]
  25. StrackK.M.2014. Future directions of electromagnetic methods for hydrocarbon applications. Surveys in Geophysics35, 157–177.
    [Google Scholar]
  26. StreichR.2014. Controlled‐source EM exploration and monitoring on land. 22nd Electromagnetic Induction Workshop, Weimar, Germany.
  27. StreichR., BeckenM., MatzanderU. and RitterO.2011. Strategies for land based controlled‐source electromagnetic surveying in high‐noise regions. The Leading Edge30(10), 1174–1181.
    [Google Scholar]
  28. StreichR., BeckenM. and RitterO.2013. Robust processing of noisy landbased controlled‐source electromagnetic data. Geophysics78(5), E237–E247.
    [Google Scholar]
  29. SwidinskyA., EdwardsR.N. and JegenM.2013. The marine controlled source electromagnetic response of a steel borehole casing: applications for the NEPTUNE Canada gas hydrate observatory. Geophysical Prospecting61(4), 842–856.
    [Google Scholar]
  30. TietzeK. and RitterO.2014. Electromagnetic monitoring of the propagation of an injected polymer for enhanced oil recovery in Northern Germany. 76th EAGE Conference and Exhibition, Amsterdam, The Netherlands, Extended Abstract.
  31. VilamajóE., QueraltP., LedoJ. and MarcuelloA.2013. Feasibility of Monitoring the Hontomín (Burgos, Spain) CO2 Storage Site Using a Deep EM Source. Surveys in Geophysics34(4), 441–461.
    [Google Scholar]
  32. WiriantoM., MulderW.A. and SlobE.C.2010. A feasibility study of land CSEM reservoir monitoring in a complex 3‐D model. Geophysical Journal International181(2), 741–755.
    [Google Scholar]
  33. ZhdanovM.S., EndoM., CoxL.H., ČumaM., LinfootJ., AndersonC.et al. 2014. Three‐dimensional inversion of towed streamer electromagnetic data. Geophysical Prospecting62, 552–572.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12331
Loading
/content/journals/10.1111/1365-2478.12331
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): CSEM , Electromagnetic , Reservoir geophysics , Reservoir monitoring and VED
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error