1887
Volume 65 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

An alternative laboratory technique to measure the elastic constants of solid samples, based on the analysis of the cross‐correlation spectra of the vibratory response of randomly excited short solid cylinders, has been recently proposed. The aim of this paper is to check the ability of the technique called passive ultrasonic interferometry to monitor fluid substitution in different rock samples. Velocity variations due to fluid substitution are easily measured if the wave attenuation in the fluid‐saturated rock is not too large (typically in rocks with few cracks or microfractures).

The experimental results are in agreement with the predictions of Biot–Gassmann poroelastic theory. The effect of substituting water with a stiffer saturating fluid, such as ethylene glycol, is to increase the overall bulk modulus of the rock, without any substantial effect on shear modulus. Furthermore, the experimental results compare well with those obtained independently with conventional pulse‐transmission technique using ultrasonic transducers. However, the measured pulse‐transmission bulk moduli are slightly larger than the corresponding measured ultrasonic interferometry moduli, with the deviation increasing with increasing fluid viscosity. This can be explained by dispersion due to wave‐induced flow of the viscous fluid since pulse‐transmission experiments involve higher frequencies than ultrasonic interferometry experiments.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12372
2016-04-06
2024-04-20
Loading full text...

Full text loading...

References

  1. AdelinetM., FortinJ., GuéguenY., SchubnelA. and GeoffroyL.2010. Frequency and fluid effects on elastic properties of basalt: experimental investigations. Geophysical Research Letters37, L02303.
    [Google Scholar]
  2. ArtsR.J. and RasolofosaonP.N.J.1992. Complete elasticity tensor in dry and saturated rocks: experiments versus theory. 62nd SEG meeting, New Orleans, USA, Expanded Abstracts, 648–651.
  3. BaigA., CampilloM. and BrenguierF.2009. Denoising seismic noise cross correlations. Journal of Geophysical Research114, B08310.
    [Google Scholar]
  4. BarbouteauS., RasolofosaonP., Dubos‐SalléeN., VassilV., PoitrineauV. and NauroyJ.‐F.2015. From noise correlation to resonant ultrasound spectroscopy in rock acoustics. Geophysical Prospecting. In press.
    [Google Scholar]
  5. BiotM.A.1941. General theory of three‐dimensional consolidation. Journal of Applied Physics12, 155–164.
    [Google Scholar]
  6. BourbiéT., CoussyO. and ZinsznerB.1987. Acoustics of Porous Media. Editions Technip, Paris.
    [Google Scholar]
  7. BrenguierF., ShapiroN.M., CampilloM., FerrazziniV., DuputelZ., CoutantO.et al. 2008. Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience1, 126–130.
    [Google Scholar]
  8. BrenguierF., ClarkeD., AokiY., ShapiroN.M., CampilloM. and FerrazziniV.2011. Monitoring volcanoes using seismic noise correlations. Comptes Rendus Geoscience343, 633–638.
    [Google Scholar]
  9. CadoretT.1993. Effet de la saturation eau/gaz sur les propriétés acoustiques des roches. Étude aux fréquences sonores et ultrasonores . Ph.D. Dissertation, Université de Paris VII, Paris, France.
  10. CalvertR.2005. Insights and Methods for 4D Reservoir Monitoring and Characterization . EAGE/SEG Distinguished Instructor Short Course.
  11. CengelY. and CimbalaJ.2010. Fluid Mechanics Fundamentals and Applications, 2nd Edition. Mc‐GrawHill.
    [Google Scholar]
  12. ClaerboutJ.F.1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics33, 264–269.
    [Google Scholar]
  13. DuvallT.L., JefferiesS.M., HarveyJ.W. and PomerantzM.A.1993. Time–distance helioseismology. Nature362, 430–432.
    [Google Scholar]
  14. GassmannF.1951. Über die Elastizität poröser Medien. Vierteljahrs‐schrift der Naturforschenden Gesellschaft in Zürich96, 1–23.
    [Google Scholar]
  15. GouédardP., StehlyL., BrenguierF., CampilloM., Colin de VerdièreY., LaroseE.et al. 2008. Cross‐correlation of random fields: mathematical approach and applications. Geophysical Prospecting56, 375–393.
    [Google Scholar]
  16. GrêtA., SniederR., AsterR.C. and KyleP.R.2005. Monitoring rapid temporal change in a volcano with coda wave interferometry. Geophysical Research Letters32, L06304.
    [Google Scholar]
  17. GrêtA., SniederR. and ScalesJ.A.2006. Time‐lapse monitoring of rock properties with coda wave interferometry. Journal of Geophysical Research111, B03305.
    [Google Scholar]
  18. GuéguenY. and BoutécaM. 2004. Mechanics of Fluid Saturated Rocks, pp. 416. Academic Press, New York, USA.
    [Google Scholar]
  19. JonesT.D.1986. Pore fluids and frequency‐dependent wave propagation in rocks. Geophysics51, 1939–1953.
    [Google Scholar]
  20. LebedevM., Toms‐StewartJ., ClennellB., PervukhinaM., ShulakovaV., PatersonL.et al. 2009. Direct laboratory observation of patchy saturation and its effects on ultrasonic velocities. The Leading Edge28, 24–27.
    [Google Scholar]
  21. LobkisO.I. and WeaverR.L.2001. On the emergence of the Green's function in the correlations of a diffuse field. Journal of the Acoustical Society of America110, 3011–3017.
    [Google Scholar]
  22. LucetN.1989. Vitesse et atténuation des ondes élastiques soniques et ultrasoniques dans les roches sous pression de confinement . PhD Dissertation, Université Paris 6, France.
  23. MavkoG. and JizbaD.1991. Estimating grain‐scale fluid effects on velocity dispersion in rocks. Geophysics56, 1940–1949.
    [Google Scholar]
  24. MavkoG., MukerjiT. and DvorkinJ.1998. The Rock Physics Handbook. Cambridge University Press.
    [Google Scholar]
  25. MavkoG. and Nolen‐HoeksemaR.1994. Estimating seismic velocities at ultrasonic frequencies in partially saturated rocks. Geophysics59, 252–258.
    [Google Scholar]
  26. MavkoG. and NurA.1979. Wave attenuation in partially saturated rocks. Geophysics44, 161–178.
    [Google Scholar]
  27. MeekerT.R. and MeitzlerA.H.1964. Guided wave propagation in elongated cylinders and plates. In: Physical Acoustics, Vol. I‐A (ed. W.P.Mason ), pp. 111–167. Academic Press. ISBN 978‐1‐4832‐2857‐0.
    [Google Scholar]
  28. MiglioriA. and SarraoJ.L.1997. Resonant ultrasound spectroscopy: Applications to Physics, Materials Measurements, and Non‐Destructive Evaluation. Wiley.
    [Google Scholar]
  29. MordretA., JollyA.D., DuputelZ. and FournierN.2010. Monitoring of phreatic eruptions using interferometry on retrieved cross‐correlation function from ambient seismic noise: Results from Mt. Ruapehu, New Zealand. Journal of Volcanology and Geothermal Research191, 46–59.
    [Google Scholar]
  30. MüllerT.M. and GurevichB.2005. Wave induced fluid flow in random porous media: Attenuation and dispersion of elastic waves. Journal of the Acoustical Society of America117, 2732–2741.
    [Google Scholar]
  31. O'ConnellR.J. and BudianskyB.1977. Viscoelastic properties of fluid‐saturated cracked solids. Journal of Geophysical Research82, 5719–5735.
    [Google Scholar]
  32. PalmerI.D. and TravioliaM.L.1980. Attenuation by squirt flow in undersaturated gas sands. Geophysics45, 1780–1792.
    [Google Scholar]
  33. RasolofosaonP.N.J. and ZinsznerB.2002. Complete poroelastic characterization of arbitrarily anisotropic rocks using wave propagation ‐ Laboratory experiments versus theoretical predictions. In: Poromechanics II: Proceedings of the 2nd Biot Conference in Poromechanics, Grenoble, France, 26–28 August 2002, (eds. J.L.Auriault et al.), pp. 783–788. A.A. Balkema Publishers.
    [Google Scholar]
  34. RasolofosaonP.N.J. and ZinsznerB.2007. The unreasonable success of Gassmann's theory… revisited. Journal of Seismic Exploration16, 281–301.
    [Google Scholar]
  35. RasolofosaonP.N.J. and ZinsznerB.2009. Poroelastic equations closely examined by Ultrasonic experiments in rocks. In Poromechanics IV: Proceedings of the Fourth Biot Conference on Poromechanics (eds. H.I.Ling , A.Smyth , and R.Betti ), pp. 661–666. Destech Publication Inc., Lancaster, USA.
    [Google Scholar]
  36. RouxP., KupermanW.A. and the NPAL Group . 2004. Extracting coherent wave fronts from acoustic ambient noise in the ocean. Journal of the Acoustical Society of America116, 1995–2003.
    [Google Scholar]
  37. SamsM.S., NeepJ.P., WorthingtonM.H. and KingM.S.1997. The measurement of velocity dispersion and frequency‐dependent intrinsic attenuation in sedimentary rocks. Geophysics62, 1456–1464.
    [Google Scholar]
  38. SchusterG.T.2009. Seismic interferometry. Cambridge University Press.
    [Google Scholar]
  39. Sens‐SchönfelderC. and WeglerU.2006. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Research Letters33, L21302.
    [Google Scholar]
  40. ShapiroN.M. and CampilloM.2004. Emergence of broadband Rayleigh waves from orrelations of the ambient seismic noise. Geophysical Research Letters31, L07614.
    [Google Scholar]
  41. SniederR., GrêtA., DoumaH. and ScalesJ.A.2002. Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science295, 2253–2255.
    [Google Scholar]
  42. TisatoN. and QuintalB.2013. Measurements of seismic attenuation and transient fluid pressure in partially saturated Berea sandstone: evidence of fluid flow on the mesoscopic scale. Geophysical Journal International, 95, 342–351.
    [Google Scholar]
  43. WeaverR.L. and LobkisO.I.2002. On the emergence of the Green's function in the correlations of a diffuse field: pulse‐echo using thermal phonons. Ultrasonics40, 435–439.
    [Google Scholar]
  44. WeglerU. and Sens‐SchönfelderC.2007. Fault zone monitoring with passive image interferometry. Geophysical Journal International168, 1029–1033.
    [Google Scholar]
  45. ZadlerB., Le RousseauJ.H., ScalesJ.A. and SmithM.L.2004. Resonant ultrasound spectroscopy: theory and application. Geophysical Journal International156, 154–169.
    [Google Scholar]
  46. ZinsznerB. and PellerinF.‐M.2007. A Geoscientist's Guide to Petrophysics, pp. 384. IFP Energies nouvelles Publication, Editions Technip.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12372
Loading
/content/journals/10.1111/1365-2478.12372
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Fluid saturation; Rock physics; Seismic interferometry

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error