1887
Volume 65, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Spectral decomposition is a powerful tool that can provide geological details dependent upon discrete frequencies. Complex spectral decomposition using inversion strategies differs from conventional spectral decomposition methods in that it produces not only frequency information but also wavelet phase information. This method was applied to a time‐lapse three‐dimensional seismic dataset in order to test the feasibility of using wavelet phase changes to detect and map injected carbon dioxide within the reservoir at the Ketzin carbon dioxide storage site, Germany. Simplified zero‐offset forward modelling was used to help verify the effectiveness of this technique and to better understand the wavelet phase response from the highly heterogeneous storage reservoir and carbon dioxide plume. Ambient noise and signal‐to‐noise ratios were calculated from the raw data to determine the extracted wavelet phase. Strong noise caused by rainfall and the assumed spatial distribution of sandstone channels in the reservoir could be correlated with phase anomalies. Qualitative and quantitative results indicate that the wavelet phase extracted by the complex spectral decomposition technique has great potential as a practical and feasible tool for carbon dioxide detection at the Ketzin pilot site.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12383
2016-08-25
2021-07-30
Loading full text...

Full text loading...

References

  1. AvsethP., MukerjiT., JørstadA., MavkoG. and VeggelandT.2001. Seismic reservoir mapping from 3‐D AVO in a North Sea turbidite system. Geophysics66, 1157–1176.
    [Google Scholar]
  2. BeckA. and TeboulleM.2009. A fast iterative shrinkage‐thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences2, 183–202.
    [Google Scholar]
  3. BergmannP., KashubinA., IvandicM., LüthS. and JuhlinC.2014. Time‐lapse difference static correction using prestack crosscorrelations: 4D seismic image enhancement case from Ketzin. Geophysics79, B243–B252.
    [Google Scholar]
  4. BergmannP., YangC., LüthS., JuhlinC. and CosmaC.2011. Time‐lapse processing of 2D seismic profiles with testing of static correction methods at the CO2 injection site Ketzin (Germany). Journal of Applied Geophysics75, 124–139.
    [Google Scholar]
  5. BohlenT.2002. Parallel 3‐D viscoelastic finite difference seismic modelling. Computers & Geosciences28, 887–899.
    [Google Scholar]
  6. BonarD., SacchiM.D., CaoH. and LiX.‐G.2010. Time–frequency analysis via deconvolution with sparsity constraints. GeoCanada, Calgary, Canada, Expanded Abstracts.
  7. BonarD.C. and SacchiM.D.2010. Complex spectral decomposition via inversion strategies. 80th SEG meeting, Denver, USA, Expanded Abstracts, 1408–1412.
  8. ClassH., MahlL., AhmedW., NordenB., KühnM. and KempkaT.2015. Matching pressure measurements and observed CO2 arrival times with static and dynamic modelling at the Ketzin storage site. Energy Procedia76, 623–632.
    [Google Scholar]
  9. DengW. and MorozovI.B.2013. New approach to finite‐difference memory variables by using Lagrangian mechanics. CSEG/CWLS/CPG Convention, Calgary, Canada, Expanded Abstracts.
  10. GaborD.1946. Theory of communication. Journal of the Institution of Electrical Engineers93, 429–441.
    [Google Scholar]
  11. GaoR. and YanR.2011. Wavelets: Theory and Applications for Manufacturing. Springer.
    [Google Scholar]
  12. HallM.2006. Resolution and uncertainty in spectral decomposition. First Break24, 43–47.
    [Google Scholar]
  13. HanL., LiuC. and YuanS.2015. Can we use wavelet phase change due to attenuation for hydrocarbon detection? 85th SEG meeting, Las Vegas, USA, Expanded Abstracts, 2962–2966.
  14. HuangF., JuhlinC., HanL., KempkaT., NordenB., LüthS.et al. 2015a. Application of seismic complex decomposition on thin layer detection of the CO2 plume at Ketzin, Germany. 85th SEG meeting, New Orleans, USA, Expanded Abstracts, 5477–5482.
  15. HuangF., JuhlinC., KempkaT., NordenB. and ZhangF.2015b. Modeling 3D time‐lapse seismic response induced by CO2 by integrating borehole and 3D seismic data – A case study at the Ketzin pilot site, Germany. International Journal of Greenhouse Gas Control36, 66–77.
    [Google Scholar]
  16. IvandicM., JuhlinC., LüthS., BergmannP., KashubinA., SopherD.et al. 2015. Geophysical monitoring at the Ketzin pilot site for CO2 storage: New insights into the plume evolution. International Journal of Greenhouse Gas Control32, 90–105.
    [Google Scholar]
  17. IvandicM., YangC., LüthS., CosmaC. and JuhlinC.2012a. Time‐lapse analysis of sparse 3D seismic data from the CO2 storage pilot site at Ketzin, Germany. Journal of Applied Geophysics84, 14–28.
    [Google Scholar]
  18. IvanovaA., JuhlinC., LenglerU., BergmannP., LüthS. and KempkaT.2013. Impact of temperature on CO2 storage at the Ketzin site based on fluid flow simulations and seismic data. International Journal of Greenhouse Gas Control19, 775–784.
    [Google Scholar]
  19. IvanovaA., KashubinA., JuhojunttiN., KummerowJ., HenningesJ., JuhlinC.et al. 2012b. Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany. Geophysical Prospecting60, 957–973.
    [Google Scholar]
  20. JuhlinC., GieseR., Zinck‐JørgensenK., CosmaC., KazemeiniH., JuhojunttiN.et al. 2007. 3D baseline seismics at Ketzin, Germany: the CO2SINK project. Geophysics72, B121–B132.
    [Google Scholar]
  21. KashubinA., JuhlinC., MalehmirA., LüthS., IvanovaA. and JuhojunttiN.2011. A footprint of rainfall on land seismic data repeatability at the CO2 storage pilot site, Ketzin, Germany. 81st SEG meeting, San Antonio, USA, Expanded Abstracts, 4165–4169.
  22. KazemeiniS.H., JuhlinC., Zinck‐JørgensenK. and NordenB.2009. Application of the continuous wavelet transform on seismic data for mapping of channel deposits and gas detection at the CO2SINK site, Ketzin, Germany. Geophysical Prospecting57, 111–123.
    [Google Scholar]
  23. KempkaT., ClassH., GörkeU.‐J., NordenB., KolditzO., KühnM.et al. 2013. A dynamic flow simulation code intercomparison based on the revised static model of the Ketzin pilot site. Energy Procedia40, 418–427.
    [Google Scholar]
  24. KempkaT. and KühnM.2013. Numerical simulations of CO2 arrival times and reservoir pressure coincide with observations from the Ketzin pilot site, Germany. Environmental Earth Sciences70, 3675–3685.
    [Google Scholar]
  25. KlingC.2011. Structural interpretation and application of spectral decomposition for facies analysis of three‐dimensional reflection seismic data at the Ketzin CO2 storage site. Master thesis, Technical University Berlin, Germany.
    [Google Scholar]
  26. KumarP. and Foufoula‐GeorgiouE.1997. Wavelet analysis for geophysical applications. Reviews of Geophysics35, 385–412.
    [Google Scholar]
  27. LiuC., HanL., ZhangY. and YeY.2015. Application of seismic complex decomposition on hydrocarbon detection. 77th EAGE Conference and Exhibition, Madrid, Spain, Expanded Abstracts, Tu P6 02.
  28. MartensS., LiebscherA., MöllerF., HenningesJ., KempkaT., LüthS.et al. 2013. CO2 storage at the Ketzin pilot site, Germany: fourth year of injection, monitoring, modelling and verification. Energy Procedia37, 6434–6443.
    [Google Scholar]
  29. MazzottiA.1991. Amplitude, phase and frequency versus offset applications. Geophysical Prospecting39, 863–886.
    [Google Scholar]
  30. NordenB., FörsterA., Vu‐HoangD., MarcelisF., SpringerN. and Le NirI.2010. Lithological and petrophysical core‐log interpretation in CO2SINK, the European CO2 onshore research storage and verification project. SPE Reservoir Evaluation & Engineering13, 179–192.
    [Google Scholar]
  31. NordenB. and FrykmanP.2013. Geological modelling of the Triassic Stuttgart Formation at the Ketzin CO2 storage site, Germany. International Journal of Greenhouse Gas Control19, 756–774.
    [Google Scholar]
  32. PevznerR., ShulakovaV., KepicA. and UrosevicM.2011. Repeatability analysis of land time‐lapse seismic data: CO2CRC Otway pilot project case study. Geophysical Prospecting59, 66–77.
    [Google Scholar]
  33. PrevedelB., WohlgemuthL., HenningesJ., KrügerK., NordenB., FörsterA.et al. 2008. The CO2SINK boreholes for geological storage testing. Scientific Drilling6, 32–37.
    [Google Scholar]
  34. RevelleR. and SuessH.E.1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus9, 18–27.
    [Google Scholar]
  35. SchillingF., BormG., WürdemannH., MöllerF., KühnM. and the CO2SINK Group . 2009. Status report on the first European on‐shore CO2 storage site at Ketzin (Germany). Energy Procedia1, 2029–2035.
    [Google Scholar]
  36. SopherD., JuhlinC., HuangF., IvandicM. and LuethS.2014. Quantitative assessment of seismic source performance: Feasibility of small and affordable seismic sources for long term monitoring at the Ketzin CO2 storage site, Germany. Journal of Applied Geophysics107, 171–186.
    [Google Scholar]
  37. StaplesR., HobbsR. and WhiteR.1999. A comparison between airguns and explosives as wide‐angle seismic sources. Geophysical Prospecting47, 313–339.
    [Google Scholar]
  38. StockerT., QinD., PlattnerG., TignorM., AllenS., BoschungJ.et al. 2013. Climate Change 2013: The Physical Science Basis. Cambridge University Press.
    [Google Scholar]
  39. StucchiE., MazzottiA. and CiuffiS.2005. Seismic preprocessing and amplitude cross‐calibration for a time‐lapse amplitude study on seismic data from the Oseberg reservoir. Geophysical Prospecting53, 265–282.
    [Google Scholar]
  40. TanerM.T., KoehlerF. and SheriffR.1979. Complex seismic trace analysis. Geophysics44, 1041–1063.
    [Google Scholar]
  41. TaryJ.B., HerreraR.H., HanJ. and van der BaanM.2014. Spectral estimation—What is new? What is next? Reviews of Geophysics52, 723–749.
    [Google Scholar]
  42. WürdemannH., MöllerF., KühnM., HeidugW., ChristensenN.P., BormG.et al. 2010. CO2SINK—From site characterisation and risk assessment to monitoring and verification: One year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany. International Journal of Greenhouse Gas Control4, 938–951.
    [Google Scholar]
  43. WhiteJ.C., WilliamsG.A. and ChadwickR.A.2013. Thin layer detectability in a growing CO2 plume: testing the limits of time‐lapse seismic resolution. Energy Procedia37, 4356–4365.
    [Google Scholar]
  44. WhiteJ.C., WilliamsG.A., GrudeS. and ChadwickR.A.2015. Utilizing spectral decomposition to determine the distribution of injected CO2 at the Snohvit field. Geophysical Prospecting63(5), 1213–1223.
    [Google Scholar]
  45. XuZ., JuhlinC., GudmundssonO., ZhangF., YangC., KashubinA.et al. 2012. Reconstruction of subsurface structure from ambient seismic noise: an example from Ketzin, Germany. Geophysical Journal International189, 1085–1102.
    [Google Scholar]
  46. YangC., JuhlinC., EnescuN., CosmaC. and LuethS.2010. Moving source profile data processing, modelling and comparison with 3D surface seismic data at the CO2SINK project site, Ketzin, Germany. Near Surface Geophysics8, 601–610.
    [Google Scholar]
  47. YordkayhunS., IvanovaA., GieseR., JuhlinC. and CosmaC.2009a. Comparison of surface seismic sources at the CO2SINK site, Ketzin, Germany. Geophysical Prospecting57, 125–139.
    [Google Scholar]
  48. YordkayhunS., TryggvasonA., NordenB., JuhlinC. and BergmanB.2009b. 3D seismic traveltime tomography imaging of the shallow subsurface at the CO2SINK project site, Ketzin, Germany. Geophysics74, G1–G15.
    [Google Scholar]
  49. ZhangF., JuhlinC., CosmaC., TryggvasonA. and PrattR.G.2012. Cross‐well seismic waveform tomography for monitoring CO2 injection: a case study from the Ketzin Site, Germany. Geophysical Journal International189, 629–646.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12383
Loading
/content/journals/10.1111/1365-2478.12383
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Inversion , Modelling , Seismic , Signal processing and Time‐lapse
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error