1887
Volume 65 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Stochastic optimization methods, such as genetic algorithms, search for the global minimum of the misfit function within a given parameter range and do not require any calculation of the gradients of the misfit surfaces. More importantly, these methods collect a series of models and associated likelihoods that can be used to estimate the posterior probability distribution. However, because genetic algorithms are not a Markov chain Monte Carlo method, the direct use of the genetic‐algorithm‐sampled models and their associated likelihoods produce a biased estimation of the posterior probability distribution. In contrast, Markov chain Monte Carlo methods, such as the Metropolis–Hastings and Gibbs sampler, provide accurate posterior probability distributions but at considerable computational cost. In this paper, we use a hybrid method that combines the speed of a genetic algorithm to find an optimal solution and the accuracy of a Gibbs sampler to obtain a reliable estimation of the posterior probability distributions. First, we test this method on an analytical function and show that the genetic algorithm method cannot recover the true probability distributions and that it tends to underestimate the true uncertainties. Conversely, combining the genetic algorithm optimization with a Gibbs sampler step enables us to recover the true posterior probability distributions. Then, we demonstrate the applicability of this hybrid method by performing one‐dimensional elastic full‐waveform inversions on synthetic and field data. We also discuss how an appropriate genetic algorithm implementation is essential to attenuate the “genetic drift” effect and to maximize the exploration of the model space. In fact, a wide and efficient exploration of the model space is important not only to avoid entrapment in local minima during the genetic algorithm optimization but also to ensure a reliable estimation of the posterior probability distributions in the subsequent Gibbs sampler step.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12397
2016-06-29
2024-03-28
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.1980. Quantitative Seismology: Theory and Methods. W.H. Freeman and Company.
    [Google Scholar]
  2. BachrachR.2006. Joint estimation of porosity and saturation using stochastic rock‐physics modeling. Geophysics71(5), O53–O63.
    [Google Scholar]
  3. BäckT. and HoffmeisterF.1991. Extended Selection Mechanisms in Genetic Algorithms. Morgan Kaufmann Publishers.
    [Google Scholar]
  4. BackusG.E.1962. Long‐wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research67(11), 4427–4440.
    [Google Scholar]
  5. BellmanR.E.1957. Dynamic Programming. Princeton University Press.
    [Google Scholar]
  6. BlickleT. and ThieleL.1995. A Comparison of Selection Schemes Used in Genetic Algorithms , TIK Report11.
    [Google Scholar]
  7. DattaD.2015. Estimating starting models for full waveform inversion using a global optimization method. 77th EAGE Conference and Exhibition, Madrid, Spain, Expanded Abstracts.
  8. DiouaneY., CalandraH., GrattonS. and VasseurX.2014. A parallel evolution strategy for acoustic full‐waveform inversion. In: EAGE Workshop on High Performance Computing for Upstream.
  9. DuijndamA.J.W.1988. Bayesian estimation in seismic inversion, Part 1: Principles. Geophysical Prospecting36(8), 878–898.
    [Google Scholar]
  10. EvensenG.2009. Data Assimilation: The Ensemble Kalman Filter. Springer Science + Business Media.
    [Google Scholar]
  11. FliednerM.M., TreitelS. and MacGregorL.2012. Full‐waveform inversion of seismic data with the neighborhood algorithm. The Leading Edge31(5), 570–579.
    [Google Scholar]
  12. GaoZ., GaoJ., ZhibinP. and ZhangX.2014. Building an initial model for full waveform inversion using a global optimization scheme. 84th SEG meeting, Denver, USA, Expanded Abstracts, 1136–1141.
  13. GelmanA., CarlinJ.B., SternH.S., DunsonD.B., VehtariA. and RubinD.B.2013. Bayesian Data Analysis. CRC Press.
    [Google Scholar]
  14. GemanS. and GemanD.1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence6, 721–741.
    [Google Scholar]
  15. GilksW.R. and WildP.1992. Adaptive rejection sampling for Gibbs sampling. Applied Statistics41(2), 337–348.
    [Google Scholar]
  16. GoldbergD.E.1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison–Wesley.
    [Google Scholar]
  17. GoldbergD.E. and DebK.1991. A comparative analysis of selection schemes used in genetic algorithms. Urbana51, 61801–2996.
    [Google Scholar]
  18. GoldbergD.E. and SegrestP.1987. Finite Markov chain analysis of genetic algorithms. In: Proceedings of the International Conference on Genetic Algorithms, Vol. 1.
  19. GouldS.J. and EldredgeN.1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology115–151.
    [Google Scholar]
  20. GouveiaW.P. and ScalesJ.A.1997. Resolution of seismic waveform inversion: Bayes versus Occam. Inverse Problems13(2), 323.
    [Google Scholar]
  21. GouveiaW.P. and ScalesJ.A.1998. Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis. Journal of Geophysical Research: Solid Earth103(B2), 2759–2779.
    [Google Scholar]
  22. HollandJ.H.1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University Michigan Press.
    [Google Scholar]
  23. HongT. and SenM.K.2009. A new MCMC algorithm for seismic waveform inversion and corresponding uncertainty analysis. Geophysical Journal International177(1), 14–32.
    [Google Scholar]
  24. HornJ.1993. Finite Markov chain analysis of genetic algorithms with niching. Forrest727, 110–117.
    [Google Scholar]
  25. JinL., SenM.K. and StoffaP.L.2008. One‐dimensional prestack seismic waveform inversion using Ensemble Kalman Filter. 78th SEG meeting, Las Vegas, USA, Expanded Abstracts, 1920–1924.
  26. KennettB.L.1983. Seismic Wave Propagation in Stratified Media. Cambridge University Press.
    [Google Scholar]
  27. LiT. and MallickS.2015. Multicomponent, multi‐azimuth pre‐stack seismic waveform inversion for azimuthally anisotropic media using a parallel and computationally efficient non‐dominated sorting genetic algorithm. Geophysical Journal International200(2), 1134–1152.
    [Google Scholar]
  28. MallickS.1999. Some practical aspects of prestack waveform inversion using a genetic algorithm: An example from the east Texas Woodbine gas sand. Geophysics64(2), 326–336.
    [Google Scholar]
  29. MallickS. and DuttaN.C.2002. Shallow water flow prediction using prestack waveform inversion of conventional 3D seismic data and rock modeling. The Leading Edge21(7), 675–680.
    [Google Scholar]
  30. MallickS., MukhopadhyayP.K., PadhiA. and AlvaradoV.2010. Prestack waveform inversion–the present state and the road ahead. 80th SEG meeting, Denver, USA, Expanded Abstracts, 4428–4431.
  31. de MatosM.C., OsorioP.L. and JohannP.R.2006. Unsupervised seismic facies analysis using wavelet transform and self‐organizing maps. Geophysics72(1), P9–P21.
    [Google Scholar]
  32. MitchellM.1998. An Introduction to Genetic Algorithms. MIT Press.
    [Google Scholar]
  33. MorganJ., WarnerM., BellR., AshleyJ., BarnesD., LittleR.et al. 2013. Next‐generation seismic experiments: wide‐angle, multi‐azimuth, three‐dimensional, full‐waveform inversion. Geophysical Journal International195(3), 1657–1678.
    [Google Scholar]
  34. OpertoS., GholamiY., PrieuxV., RibodettiA., BrossierR., MetivierL.et al. 2013. A guided tour of multiparameter full‐waveform inversion with multicomponent data: from theory to practice. The Leading Edge32(9), 1040–1054.
    [Google Scholar]
  35. PrieuxV., BrossierR., GholamiY., OpertoS., VirieuxJ., BarkvedO.et al. 2011. On the footprint of anisotropy on isotropic full waveform inversion: The Valhall Case Study. Geophysical Journal International187, 1495–1515.
    [Google Scholar]
  36. ReevesC.R. and RoweJ.E.2002. Genetic Algorithms—Principles and Perspectives (A Guide to GA Theory). Kluwer Academic Publisher.
    [Google Scholar]
  37. RubinsteinR.Y. and KroeseD.P.2011. Simulation and the Monte Carlo Method. John Wiley & Sons.
    [Google Scholar]
  38. SajevaA., AleardiM., MazzottiA., BienatiN. and StucchiE.2014a. Estimation of velocity macro‐models using stochastic full‐waveform inversion. 84th SEG meeting, Denver, USA, Expanded Abstracts, 1227–1231.
  39. SajevaA., AleardiM., MazzottiA., StucchiE. and GaluzziB.2014b. Comparison of stochastic optimization methods on two analytic objective functions and on a 1D Elastic FWI. 76th EAGE Conference and Exhibition, Amsterdam, The Netherlands, Extended Abstracts.
  40. SambridgeM.1999. Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble. Geophysical Journal International138(3), 727–746.
    [Google Scholar]
  41. Schlierkamp‐VoosenD. and MühlenbeinH.1993. Predictive models for the breeder genetic algorithm. Evolutionary Computation1(1), 25–49.
    [Google Scholar]
  42. Schlierkamp‐VoosenD. and MühlenbeinH.1996. Adaptation of population sizes by competing subpopulations. In: Proceedings of the 1996 IEEE Conference on Evolutionary Computation.
  43. SenM.K. and StoffaP.L.1991. Nonlinear one‐dimensional seismic waveform inversion using simulated annealing. Geophysics56(10), 1624–1638.
    [Google Scholar]
  44. SenM.K. and StoffaP.L.1992. Rapid sampling of model space using genetic algorithms: examples from seismic waveform inversion. Geophysical Journal International108(1), 281–292.
    [Google Scholar]
  45. SenM.K. and StoffaP.L.1996. Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion. Geophysical Prospecting44(2), 313–350.
    [Google Scholar]
  46. SirgueL., BarkvedO.I., DellingerJ., EtgenJ., AlbertinU. and KommedalJ.H.2010. Full waveform inversion: The next leap forward in imaging at Valhall. First Break28, 65–70.
    [Google Scholar]
  47. SivanandamS.N. and DeepaS.N.2008. Genetic Algorithm Optimization Problems. Springer Verlag GmBH.
    [Google Scholar]
  48. TaneseR.1987. Parallel genetic algorithm for a hypercube. In: Proceedings of International Conference on Genetic Algorithms, pp. 177–183.
  49. TarantolaA.1986. A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics51(10), 1893–1903.
    [Google Scholar]
  50. TarantolaA.2005. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM.
    [Google Scholar]
  51. TognarelliA., StucchiE.M., BienatiN., SajevaA., AleardiM. and MazzottiA.2015. Two grid stochastic full waveform inversion of 2D marine seismic data. 77th EAGE Conference and Exhibition, Madrid, Spain, Extended Abstracts.
  52. UltschA.1993. Self‐Organizing Neural Networks for Visualisation and Classification. Springer Verlag GmBH.
    [Google Scholar]
  53. VirieuxJ. and OpertoS.2009. An overview of full‐waveform inversion in exploration geophysics. Geophysics74(6), WCC1–WCC26.
    [Google Scholar]
  54. VoronoiG.1908. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaits. Journal für die reine und angewandte Mathematik133, 97–178.
    [Google Scholar]
  55. XiaG., SenM.K. and StoffaP.L.1998. 1‐D elastic waveform inversion: A divide‐and‐conquer approach. Geophysics63(5), 1670–1684.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12397
Loading
/content/journals/10.1111/1365-2478.12397
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Elastic; Full‐waveform inversion; Stochastic

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error