1887
Volume 65, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Between the years 2008 and 2013, approximately 67 kilotons of CO have been injected at the Ketzin site, Germany. As part of the geophysical monitoring programme, time‐lapse electrical resistivity tomography has been applied using crosshole and surface‐downhole measurements of electrical resistivity tomography. The data collection of electrical resistivity tomography is partly based on electrodes that are permanently installed in three wells at the site (one injection well and two observation wells). Both types of ERT measurements consistently show the build‐up of a CO‐related resistivity signature near the injection point. Based on the imaged resistivity changes and a petrophysical model, CO saturation levels are estimated. These CO saturations are interpreted in conjunction with CO saturations inferred from neutron‐gamma loggings. Apart from the CO–brine substitution response in the observed resistivity changes, significant imprints from the dynamic behaviour of the CO in the reservoir are observed.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12426
2016-08-22
2020-04-09
Loading full text...

Full text loading...

References

  1. AlemuB.L., AkerE., SoldalM., JohnsenØ. and AagaardP.2013. Effect of sub‐core scale heterogeneities on acoustic and electrical properties of a reservoir rock: a CO2 flooding experiment of brine saturated sandstone in a computed tomography scanner. Geophysical Prospecting61(1), 235–250.
    [Google Scholar]
  2. BaumannG., HenningesJ. and LuciaM.D.2014. Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron‐gamma logging at the Ketzin pilot site. International Journal of Greenhouse Gas Control28(0), 134–146.
    [Google Scholar]
  3. BergmannP.2012. Time‐lapse seismic and electrical resistivity tomography combined for monitoring of the CO2 storage site, Ketzin, Germany. Dissertation thesis, University of Kiel, Germany.
  4. BergmannP., DierschM., GötzJ., IvandicM., IvanovaA., JuhlinC.et al. 2016. Review on geophysical monitoring of CO2 injection at Ketzin, Germany. Journal of Petroleum Science and Engineering139, 112–136.
    [Google Scholar]
  5. BergmannP., IvandicM., NordenB., RückerC., KiesslingD., LüthS.et al. 2013. Combination of seismic reflection and constrained resistivity inversion with an application to 4D imaging of the CO2 storage site, Ketzin, Germany. Geophysics79(2), B37–B50.
    [Google Scholar]
  6. BergmannP., Schmidt‐HattenbergerC., KiesslingD., RückerC., LabitzkeT., HenningesJ.et al. 2012. Surface‐downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany. Geophysics77, B253–B267.
    [Google Scholar]
  7. BevcD. and MorrisonH.F.1991. Borehole‐to‐surface electrical resistivity monitoring of a salt water injection experiment. Geophysics56(6), 769–777.
    [Google Scholar]
  8. BörnerJ.H., HerdegenV., RepkeJ.U. and SpitzerK.2013. The impact of CO2 on the electrical properties of water bearing porous media — laboratory experiments with respect to carbon capture and storage. Geophysical Prospecting61(s1), 446–460.
    [Google Scholar]
  9. CarriganC.R., YangX., LaBrecqueD.J., LarsenD., FreemanD., RamirezA.L.et al. 2013. Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs. International Journal of Greenhouse Gas Control18(0), 401–408.
    [Google Scholar]
  10. DeceusterJ., KaufmannO. and Van CampM.2013. Automated identification of changes in electrode contact properties for long‐term permanent ERT monitoring experiments. Geophysics78(2), E79–E94.
    [Google Scholar]
  11. DoetschJ., KowalskyM.B., DoughtyC., FinsterleS., Ajo‐FranklinJ.B., CarriganC.R.et al. 2013. Constraining CO2 simulations by coupled modeling and inversion of electrical resistance and gas composition data. International Journal of Greenhouse Gas Control18, 510–522.
    [Google Scholar]
  12. FörsterA., NordenB., Zinck‐JørgensenK., FrykmanP., KulenkampffJ., SpangenbergE.et al. 2006. Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany. Environmental Geosciences13(3), 145–161.
    [Google Scholar]
  13. FörsterA., SchönerR., FörsterH., NordenB., BlaschkeA., LuckertJ.et al. 2010. Reservoir characterization of a CO2 storage aquifer: The upper triassic Stuttgart Formation in the Northeast German Basin. Marine and Petroleum Geology27(10), 2156–2172.
    [Google Scholar]
  14. FriedelS.2003. Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach. Geophysical Journal International153(2), 305–316.
    [Google Scholar]
  15. FrohlichR. and ParkeC.1989. The electrical resistivity of the vadose zone‐field survey. Groundwater27(4), 524–530.
    [Google Scholar]
  16. GuéguenY. and PalciauskasV.1994. Introduction to the Physics of Rocks. Princeton University Press, New Jersey.
    [Google Scholar]
  17. GüntherT., RückerC. and SpitzerK.2006. Three‐dimensional modelling and inversion of DC resistivity data incorporating topography II: Inversion. Geophysical Journal International166, 506–517.
    [Google Scholar]
  18. HansenP.1992. Analysis of discrete ill‐posed problems by means of the L‐curve. SIAM review pp. 561–580.
    [Google Scholar]
  19. HayleyK., PidliseckyA. and BentleyL.2011. Simultaneous time‐lapse electrical resistivity inversion. Journal of Applied Geophysics75, 401–411.
    [Google Scholar]
  20. HoverstenG. and GasperikovaE.2005. Non‐seismic geophysical approaches to monitoring. In: Carbon Dioxide Capture for Storage in Deep Geologic Formations – Results from the CO2 capture Project, Volume 2: Geologic Storage of Carbon Dioxide with Monitoring and Verification (ed. S.Benson ), pp. 1071–1112. Elsevier Science.
    [Google Scholar]
  21. KemnaA., KulessaB. and VereeckenH.2002. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology267(3), 125–146.
    [Google Scholar]
  22. KempkaT., Klein, E., Lucia, M.D., Tillner, E. and Kühn, M.2013. Assessment of long‐term CO2 trapping mechanisms at the Ketzin pilot site (Germany) by coupled numerical modelling. Energy Procedia37(0), 5419–5426. ISSN 1876‐6102.
    [Google Scholar]
  23. KiesslingD., Schmidt‐HattenbergerC., SchüttH., SchillingF., KrügerK., SchöbelB.et al. 2010. Geoelectrical methods for monitoring geological CO2 storage: first results from cross‐hole and surface‐downhole measurements from the CO2SINK test site at Ketzin (Germany). International Journal of Greenhouse Gas Control4(5), 816–826.
    [Google Scholar]
  24. KirschR.2006. Petrophysical properties of permeable and low permeable rocks. In: Groundwater Geophysics (ed. R.Kirsch ). Springer.
    [Google Scholar]
  25. KummerowJ. and SpangenbergE.2011. Experimental evaluation of the impact of the interactions of CO2‐SO2, brine, and reservoir rock on petrophysical properties: a case study from the Ketzin test site, Germany. Geochemistry Geophysics Geosystems12(5), Q05010.
    [Google Scholar]
  26. LabitzkeT., BergmannP., KiesslingD. and Schmidt‐Hattenberger, C.2012. 3D Surface‐downhole electrical resistivity tomography data sets of the Ketzin CO2 storage pilot from the CO2SINK project phase. GFZ Scientific Technical Report10(5).
    [Google Scholar]
  27. LaBrecqueD. and DailyW.2008. Assessment of measurement errors for galvanic‐resistivity electrodes of different composition. Geophysics73(2), F55–F64.
    [Google Scholar]
  28. LaBrecqueD., HeathG., SharpeR. and VersteegR.2004. Autonomous monitoring of fluid movement using 3‐D electrical resistivity tomography. Journal of Environmental & Engineering Geophysics9, 167–176.
    [Google Scholar]
  29. LiebscherA., MöllerF., BannachA., KöhlerS., WiebachJ., Schmidt‐HattenbergerC.et al. 2013. Injection operation and operational pressure–temperature monitoring at the CO2 storage pilot site Ketzin, Germany – design, results, recommendations. International Journal of Greenhouse Gas Control15, 163–173.
    [Google Scholar]
  30. MaillolJ., SeguinM.K., GuptaO., AkhauriH. and SenN.1999. Electrical resistivity tomography survey for delineating uncharted mine galleries in West Bengal, India. Geophysical Prospecting47(2), 103–116.
    [Google Scholar]
  31. MartensS., KempkaT., LiebscherA., LüthS., MöllerF., MyrttinenA.et al. 2012. Europes longest‐operating on‐shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environmental Earth Sciences67(2), 323–334.
    [Google Scholar]
  32. MartensS., LiebscherA., MöllerF., HenningesJ., KempkaT., LüthS.et al. 2013. CO2 Storage at the Ketzin Pilot Site, Germany: Fourth Year of Injection, Monitoring, Modelling and Verification. Energy Procedia37(0), 6434–6443.
    [Google Scholar]
  33. MartensS., LiebscherA., MöllerF., WürdemannH., SchillingF. and KühnM.2011. Progress report on the first European on‐shore CO2 storage site at Ketzin (Germany) – Second year of injection. Energy Procedia4, 3246–3253.
    [Google Scholar]
  34. MartensS., MöllerF., StreibelM. and LiebscherA.2014. Completion of five years of safe CO2 injection and transition to the post‐closure phase the Ketzin pilot site. Energy Procedia59(0), 190–197.
    [Google Scholar]
  35. MitoS. and XueZ.2011. Post‐Injection monitoring of stored CO2 at the Nagaoka pilot site: 5 years time‐lapse well logging results. Energy Procedia4, 3284–3289.
    [Google Scholar]
  36. MöllerF., LiebscherA., MartensS., Schmidt‐HattenbergerC. and KühnM.2012. Yearly operational datasets of the CO2 storage pilot site Ketzin, Germany. GFZ Scientific Technical Report.
  37. NakatsukaY., XueZ., GarciaH. and MatsuokaT.2010. Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements. International Journal of Greenhouse Gas Control4(2), 209–216.
    [Google Scholar]
  38. NordenB., FörsterA., Vu‐HoangD., MarcelisF., SpringerN. and Le NirI.2010. Lithological and petrophysical core‐log interpretation in CO2SINK, the European CO2 onshore research storage and verification project. SPE Reservoir Evaluation & Engineering13(2), 179–192.
    [Google Scholar]
  39. OldenburgD.W. and LiY.1999. Estimating depth of investigation in DC resistivity and IP surveys. Geophysics64(2), 403–416.
    [Google Scholar]
  40. PicottiS., GeiD., CarcioneJ.M., GrünhutV. and OsellaA.2013. Sensitivity analysis from single‐well ERT simulations to image CO2 migrations along wellbores. The Leading Edge32(5), 504–512.
    [Google Scholar]
  41. PrevedelB., WohlgemuthL., LegarthB., HenningesJ., SchüttH., Schmidt‐HattenbergerC.et al. 2009. The CO2SINK boreholes for geological CO2‐storage testing. Energy Procedia1(1), 2087–2094.
    [Google Scholar]
  42. RamirezA., DailyW., LaBrecqueD., OwenE. and ChesnutD.1993. Monitoring an underground steam injection process using electrical resistance tomography. Water Resources Research29(1), 73–87.
    [Google Scholar]
  43. RhoadesJ., ManteghiN., ShouseP. and AlvesW.1989. Soil electrical conductivity and soil salinity: new formulations and calibrations. Soil Science Society of America Journal53(2), 433–439.
    [Google Scholar]
  44. RückerC., GüntherT. and SpitzerK.2006. Three‐dimensional modelling and inversion of DC resistivity data incorporating topography I: Modelling. Geophysical Journal International166(2), 495– 505.
    [Google Scholar]
  45. SchillingF., BormG., WürdemannH., MöllerF. and KühnM.2009. Status report on the first European on‐shore CO2 storage site at Ketzin (Germany). Energy Procedia1(1), 2029–2035.
    [Google Scholar]
  46. Schmidt‐HattenbergerC., BergmannP., BösingD., LabitzkeT., MöllerM., SchröderS.et al. 2013. Electrical resistivity tomography (ERT) for monitoring of CO2 migration ‐ from tool development to reservoir surveillance at the Ketzin pilot site. Energy Procedia37(0), 4268–4275.
    [Google Scholar]
  47. Schmidt‐HattenbergerC., BergmannP., KießlingD., KrügerK., RückerC., SchüttH.et al. 2011. Application of a vertical electrical resistivity array (VERA) for monitoring CO2 migration at the Ketzin site: first performance evaluation. Energy Procedia4, 3363–3370.
    [Google Scholar]
  48. Schmidt‐HattenbergerC., BergmannP., LabitzkeT., SchröderS., KrügerK., RückerC.et al. 2012. A modular geoelectrical monitoring system as part of the surveillance concept in CO2 storage projects. Energy Procedia23, 400–407.
    [Google Scholar]
  49. Schmidt‐HattenbergerC., BergmannP., LabitzkeT. and WagnerF.2014. Migration monitoring by means of electrical resistivity tomography (ERT) – review on five years of operation of a permanent ERT system at the Ketzin pilot site. Energy Procedia63(0), 4366–4373.
    [Google Scholar]
  50. SzecsodyJ.E., ZhongL., ThomleJ.N., VermeulV.R., StricklandC., WilliamsM.D.et al. 2014. Influence of scCO2 injection on precipitation and metals migration, and changes in electrical resistivity. Energy Procedia63(0), 3285–3292.
    [Google Scholar]
  51. TikhonovA.N.1963. Solution of Incorrectly Formulated Problems and the Regularization Method, Soviet Mathematical Doklady4.
    [Google Scholar]
  52. TøndelR., SchüttH., DümmongS., DucrocqA., GodfreyR., LaBrecqueD.et al. 2014. Reservoir monitoring of steam‐assisted gravity drainage using borehole measurements. Geophysical Prospecting62(4), 760–778.
    [Google Scholar]
  53. TsourlosP., OgilvyR., PapazachosC. and MeldrumP.2011. Measurement and inversion schemes for single borehole‐to‐surface electrical resistivity tomography surveys. Journal of Geophysics and Engineering8(4), 487.
    [Google Scholar]
  54. WagnerF.M., BergmannP., RückerC., WieseB., LabitzkeT., Schmidt‐HattenbergerC.et al. 2015. Impact and mitigation of borehole related effects in permanent crosshole resistivity imaging: An example from the Ketzin CO2 storage site. Journal of Applied Geophysics123, 102–111.
    [Google Scholar]
  55. WagnerF.M., MöllerM., Schmidt‐HattenbergerC., KempkaT. and MaurerH.2013. Monitoring freshwater salinization in analog transport models by time‐lapse electrical resistivity tomography. Journal of Applied Geophysics89, 84–95.
    [Google Scholar]
  56. WürdemannH., MöllerF., KühnM., HeidugW., ChristensenN., BormG.et al. 2010. CO2SINK – From site characterisation and risk assessment to monitoring and verification: One year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany. International Journal of Greenhouse Gas Control4(6), 938–951.
    [Google Scholar]
  57. XueZ., KimJ., MitoS., KitamuraK. and MatsuokaT.2009. Detecting and monitoring CO2 with p‐wave velocity and resistivity from both laboratory and field scales. In: SPE International Conference on CO2 Capture, Storage, and Utilization, San Diego, CA, USA, SPE 126885.
  58. YangX., ChenX., CarriganC. and RamirezA.2014. Uncertainty quantification of CO2 saturation estimated from electrical resistance tomography data at the Cranfield site. International Journal of Greenhouse Gas Control27, 59–68.
    [Google Scholar]
  59. ZhangF., JuhlinC., IvandicM. and LüthS.2013. Application of seismic full waveform inversion to monitor CO2 injection: Modelling and a real data example from the Ketzin site, Germany. Geophysical Prospecting61(s1), 284–299.
    [Google Scholar]
  60. ZhdanovM.2002. Geophysical Inverse Theory and Regularization Problems, Vol. 36. Elsevier Science Ltd.
    [Google Scholar]
  61. ZimmerM., ErzingerJ. and KujawaC.2011. The gas membrane sensor (GMS): A new method for gas measurements in deep boreholes applied at the CO2SINK site. International Journal of Greenhouse Gas Control5(4), 995–1001.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12426
Loading
/content/journals/10.1111/1365-2478.12426
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error