1887
Volume 65, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Various models have been proposed to link partial gas saturation to seismic attenuation and dispersion, suggesting that the reflection coefficient should be frequency‐dependent in many cases of practical importance. Previous approaches to studying this phenomenon typically have been limited to single‐interface models. Here, we propose a modelling technique that allows us to incorporate frequency‐dependent reflectivity into convolutional modelling. With this modelling framework, seismic data can be synthesised from well logs of velocity, density, porosity, and water saturation. This forward modelling could act as a basis for inversion schemes aimed at recovering gas saturation variations with depth. We present a Bayesian inversion scheme for a simple thin‐layer case and a particular rock physics model and show that, although the method is very sensitive to prior information and constraints, both gas saturation and layer thickness theoretically can be estimated in the case of interfering reflections.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12437
2016-08-26
2024-04-20
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.1980. Quantitative Seismology. W. H. Freeman and Co.
    [Google Scholar]
  2. AmalokwuK., BestA.I., SothcottJ., ChapmanM., MinshullT. and LiX.Y.2014. Water saturation effects on elastic wave attenuation in porous rocks with aligned fractures. Geophysical Journal International.
    [Google Scholar]
  3. AvsethP., MukerjiT. and MavkoG.2005. Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press.
    [Google Scholar]
  4. BachrachR.2006. Joint estimation of porosity and saturation using stochastic rock‐physics modeling. Geophysics71(5), O53–O63.
    [Google Scholar]
  5. BatzleM. and WangZ.1992. Seismic properties of pore fluids. Geophysics57(11), 1396–1408.
    [Google Scholar]
  6. BiotM.A.1956. Theory of propagation of elastic waves in fluid‐saturated porous solid. I. Low frequency range. II. Higher frequency range. Journal of the Acoustical Society of America28, 168–191.
    [Google Scholar]
  7. BorcherdtR.D.2009. Viscoelastic Waves in Layered Media. Cambridge University Press.
    [Google Scholar]
  8. BulandA. and OmreH.2003. Bayesian linearized AVO inversion. Geophysics68(1), 185–198.
    [Google Scholar]
  9. CarcioneJ.M., HelleH.B. and PhamN.H.2003. White's model for wave propagation in partially saturated rocks: comparison with poroelastic numerical experiments. Geophysics68(4), 1389–1398.
    [Google Scholar]
  10. CarcioneJ.M., PicottiS., GeiD. and RossiG.2006. Physics and seismic modeling for monitoring CO2 storage. Pure and Applied Geophysics163(1), 175–207.
    [Google Scholar]
  11. CastagnaJ.P. and BackusM.M.1993. AVO analysis‐tutorial and review. Offset‐dependent reflectivity—Theory and practice of AVO analysis, 3–36.
  12. CastagnaJ.P. and SwanH.W.1997. Principles of AVO crossplotting. The Leading Edge16(4), 337–344.
    [Google Scholar]
  13. ChapmanM., LiuE. and LiX.‐Y.2006. The influence of fluid sensitive dispersion and attenuation on AVO analysis. Geophysical Journal International167, 89–105.
    [Google Scholar]
  14. ChapmanM., ZatsepinS.V. and CrampinS.2002. Derivation of a microstructural poroelastic model. Geophysical Journal International151, 427–451.
    [Google Scholar]
  15. ChenJ., HoverstenG.M., VascoD., RubinY. and HouZ.2007. A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data. Geophysics72(2), WA85–WA95.
    [Google Scholar]
  16. DaleyT.M., MyerL.R., PetersonJ.E., MajerE.L. and HoverstenG.M.2008. Time‐lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer. Environmental Geology54(8), 1657–1665.
    [Google Scholar]
  17. DasguptaR. and ClarkR.A.1998. Estimation of Q from surface seismic reflection data. Geophysics63(6), 2120–2128.
    [Google Scholar]
  18. DomenicoS.N.1976. Effect of brine‐gas mixture on velocity in an unconsolidated sand reservoir. Geophysics41(5), 882–894.
    [Google Scholar]
  19. DuttaN.C. and OdéH.1979. Attenuation and dispersion of compressional waves in fluid‐filled porous rocks with partial gas saturation (White model)‐Part I: Biot theory. Geophysics44(11), 1777–1788.
    [Google Scholar]
  20. DuttaN.C. and OdéH.1983. Seismic reflections from a gas‐water contact. Geophysics48(2), 148–162.
    [Google Scholar]
  21. FattiJ., SmithG., VailP., StraussP. and LevittP.1994. Detection of gas in sandstone reservoirs using AVO analysis: a 3D seismic case history using the Geostack technique. Geophysics59, 1362–1376.
    [Google Scholar]
  22. FosterD.J., KeysR.G. and LaneF.D.2010. Interpretation of AVO anomalies. Geophysics75(5), 75A3–75A13.
    [Google Scholar]
  23. GassmannF.1951. Über die Elastizität poröser medien: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, Vol. 96, 1–23.
  24. GonzálezE.F., MukerjiT., MavkoG. and MichelenaR.J.2003. Near and far offset P‐to‐S elastic impedance for discriminating fizz water from commercial gas. The Leading Edge22(10), 1012–1015.
    [Google Scholar]
  25. InnanenK.A.2011. Inversion of the seismic AVF/AVA signatures of highly attenuative targets. Geophysics76(1), R1–R14.
    [Google Scholar]
  26. IvanovaA., KashubinA., JuhojunttiN., KummerowJ., HenningesJ., JuhlinC.et al. 2012. Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany. Geophysical Prospecting60(5), 957–973.
    [Google Scholar]
  27. KirkpatrickS., GelattC.D. and VecchiM.P.1983. Optimization by simulated annealing. Science220, 671–680.
    [Google Scholar]
  28. LebedevM., Toms‐StewartJ., ClennellB., PervukhinaM., ShulakovaV., PatersonL.et al. 2009. Direct laboratory observation of patchy saturation and its effects on ultrasonic velocities. The Leading Edge28(1), 24–27.
    [Google Scholar]
  29. MavkoG. and MukerjiT.1998a. Bounds on low‐frequency seismic velocities in partially saturated rocks. Geophysics63(3), 918–924.
    [Google Scholar]
  30. MavkoG. and MukerjiT.1998b. A rock physics strategy for quantifying uncertainty in common hydrocarbon indicators. Geophysics63(6), 1997–2008.
    [Google Scholar]
  31. MüllerT.M., GurevichB. and LebedevM.2010. Seismic wave attenuation and dispersion resulting from wave‐induced flow in porous rocks—A review. Geophysics75(5), 75A147–75A164.
    [Google Scholar]
  32. MurphyW.F.1982. Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass. The Journal of the Acoustical Society of America71, 1458–1468.
    [Google Scholar]
  33. MurphyW.F.1984. Acoustic measures of partial gas saturation in tight sandstones. Journal of Geophysical Research: Solid Earth89, 11549–11559.
    [Google Scholar]
  34. OdebeatuE., ZhangJ., ChapmanM., LiuE. and LiX.‐Y.2006. Application of spectral decomposition to detection of dispersion anomalies associated with gas saturation. The Leading Edge25(2), 206–210.
    [Google Scholar]
  35. OstranderW.1984. Plane‐wave reflection coefficients for gas sands at nonnormal angles of incidence. Geophysics49(10), 1637–1648.
    [Google Scholar]
  36. PrideS.R., BerrymanJ.G. and HarrisJ.M.2004. Seismic attenuation due to wave‐induced flow. Journal of Geophysical Research: Solid Earth, 109(B1).
    [Google Scholar]
  37. QuintalB., SchmalholzS.M. and PodladchikovY.Y.2008. Low‐frequency reflections from a thin layer with high attenuation caused by interlayer flow. Geophysics74(1), N15–N23.
    [Google Scholar]
  38. ReineC., van der BaanM. and ClarkR.2009. The robustness of seismic attenuation measurements using fixed‐ and variable‐window time‐frequency transforms. Geophysics74(2), WA123–WA135.
    [Google Scholar]
  39. RenH., GoloshubinG. and HiltermanF.2009. Poroelastic analysis of amplitude‐versus‐frequency variations. Geophysics74(6), N41–N48.
    [Google Scholar]
  40. RubinoJ.G. and HolligerK.2012. Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophysical Journal International188(3), 1088–1102.
    [Google Scholar]
  41. RussellB.H., HedlinK., HiltermanF.J. and LinesL.R.2003. Fluid‐property discrimination with AVO: a Biot‐Gassmann perspective. Geophysics68(1), 29–39.
    [Google Scholar]
  42. RutherfordS.R. and WilliamsR.H.1989. Amplitude‐versus‐offset variations in gas sands. Geophysics54(6), 680–688.
    [Google Scholar]
  43. SchoenbergM. and ProtazioJ.1992. ‘Zoeppritz’ rationalized and generalized to anisotropy. Journal of Seismic Exploration1, 125–144.
    [Google Scholar]
  44. ShueyR.T.1985. A simplification of the Zoeppritz equations. Geophysics50, 609–614.
    [Google Scholar]
  45. SimmR. and BaconM.2014. Seismic Amplitude: An Interpreter's Handbook. Cambridge University Press.
    [Google Scholar]
  46. SmithG.C. and GidlowP.M.1987. Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting35, 993–1014.
    [Google Scholar]
  47. SpikesK., MukerjiT., DvorkinJ. and MavkoG.2007. Probabilistic seismic inversion based on rock‐physics models. Geophysics72(5), R87–R97.
    [Google Scholar]
  48. TisatoN. and QuintalB.2013. Measurements of seismic attenuation and transient fluid pressure in partially saturated Berea sandstone: evidence of fluid flow on the mesoscopic scale. Geophysical Journal International.
    [Google Scholar]
  49. TisatoN., QuintalB., ChapmanS., PodladchikovY. and BurgJ.P.2015. Bubbles attenuate elastic waves at seismic frequencies: first experimental evidence. Geophysical Research Letters.
    [Google Scholar]
  50. UlrychT.J., SacchiM.D. and WoodburyA.2001. A Bayes tour of inversion: a tutorial. Geophysics66(1), 55–69.
    [Google Scholar]
  51. WhiteJ.E.1975. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics40(2), 224–232.
    [Google Scholar]
  52. WidessM.B.1973. How thin is a thin bed? Geophysics38(6), 1176–1180.
    [Google Scholar]
  53. WoodA.W.1955. A Textbook of Sound. Macmillan Co.
    [Google Scholar]
  54. WuX., ChapmanM., LiX.‐Y. and BostonP.2014. Quantitative gas saturation estimation by frequency‐dependent amplitude‐versus‐offset analysis. Geophysical Prospecting62(6), 1224–1237.
    [Google Scholar]
  55. WuX., ChapmanM. and AngererE.2015. Interpretation of phase reversals in seismic reflections from attenuating targets. Geophysical Journal International200(1), 690–697.
    [Google Scholar]
  56. XueZ. and OhsumiT.2004. Seismic wave monitoring of CO2 migration in water‐saturated porous sandstone. Exploration Geophysics35(1), 25–32.
    [Google Scholar]
  57. ZoeppritzK.1919. Erdbebenwellen VIIIB, On the reflection and propagation of seismic waves. Göttinger NachrichtenI, 66–84.
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12437
Loading
/content/journals/10.1111/1365-2478.12437
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error