1887
Volume 65, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We present a comprehensive characterisation of the physical, mineralogical, geomechanical, geophysical, and hydrodynamic properties of Corvio sandstone. This information, together with a detailed assessment of anisotropy, is needed to establish Corvio sandstone as a useful laboratory rock‐testing standard for well‐constrained studies of thermo–hydro–mechanical–chemical coupled phenomena associated with CO storage practices and for geological reservoir studies in general. More than 200 core plugs of Corvio sandstone (38.1 and 50 mm diameters, 2:1 length‐to‐diameter ratio) were used in this characterisation study, with a rock porosity of 21.7 ± 1.2%, dry density 2036 ± 32 kg m−3, and unconfined compressive and tensile strengths of 41 ± 3.28 and 2.3 ± 0.14 MPa, respectively. Geomechanical tests show that the rock behaves elastically between ∼10 and ∼18 MPa under unconfined conditions with associated Young's modulus and Poisson's ratio of 11.8 ± 2.8 GPa and 0.34 ± 0.01 GPa, respectively. Permeability abruptly decreases with confining pressure up to ∼10 MPa and then stabilises at ∼1 mD. Ultrasonic P‐ and S‐wave velocities vary from about 2.8–3.8 km s−1 and 1.5–2.4 km s−1, respectively, over confining and differential pressures between 0.1 and 35 MPa, allowing derivation of associated dynamic elastic moduli. Anisotropy was investigated using oriented core plugs for electrical resistivity, elastic wave velocity and attenuation, permeability, and tracer injection tests. Corvio sandstone shows weak transverse isotropy (symmetry axis normal to bedding) of <10% for velocity and <20% for attenuation.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12469
2016-10-27
2020-07-06
Loading full text...

Full text loading...

References

  1. AkbarabadiM. and PiriM.2013. Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: an experimental study at reservoir conditions. Advances in Water Resources52, 190–206.
    [Google Scholar]
  2. AlcaldeJ., MarzánI., SauraE., MartíD., AyarzaP., JuhlinC.et al. 2014. 3D geological characterization of the Hontomín CO2 storage site, Spain: multidisciplinary approach from seismic, well‐log and regional data. Tectonophysics627, 6–25.
    [Google Scholar]
  3. AlemuB.L., AkerE., SoldalM., JohnsenØ. and AagaardP.2013. Effect of sub‐core scale heterogeneities on acoustic and electrical properties of a reservoir rock: a CO2 flooding experiment of brine saturated sandstone in a computed tomography scanner. Geophysical Prospecting61, 235–250.
    [Google Scholar]
  4. AndräH., CombaretN., DvorkinJ., GlattE., HanJ., KabelM.et al. 2013. Digital rock physics benchmarks—Part I: imaging and segmentation. Computers & Geosciences50, 25–32.
    [Google Scholar]
  5. AngusD.A., KendallJ.M., FisherQ.J., SeguraJ.M., SkachkovS., CrookA.J.L.et al. 2010. Modelling microseismicity of a producing reservoir from coupled fluid‐flow and geomechanical simulation. Geophysical Prospecting58, 901–914.
    [Google Scholar]
  6. AsefM.R. and NajibiA.R.2013. The effect of confining pressure on elastic wave velocities and dynamic to static Young's modulus ratio. Geophysics78, D135–D142.
    [Google Scholar]
  7. ASTM
    ASTM2007. Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures. In: Annual Book of ASTM Standards, Section 4: Construction, Vol. 04.09: Soil and Rock (II), pp. 1429–1436. West Conshohocken, PA: ASTM International.
    [Google Scholar]
  8. BatzleM.L., HanD.H. and HofmannR.2006. Fluid mobility and frequency‐dependent seismic velocity—Direct measurements. Geophysics71, N1–N9.
    [Google Scholar]
  9. BarrientosV., DelgadoJ., NavarroV., JuncosaR., FalcónI. and VázquezA.2010. Characterization and geochemical‐geotechnical properties of granite sawdust produced by the dimension stone industry of O Porriño (Pontevedra, Spain). Quarterly Journal of Engineering Geology and Hydrogeology43, 141–155.
    [Google Scholar]
  10. BednárikM. and KohútI.2012. Three‐dimensional colour functions for stress state visualisation. Computers & Geosciences48, 117–125.
    [Google Scholar]
  11. BernabéY.1991. Pore geometry and pressure dependence of the transport properties in sandstones. Geophysics56, 436–446.
    [Google Scholar]
  12. BestA.I., SothcottJ. and McCannC.2007. A laboratory study of seismic velocity and attenuation anisotropy in near‐surface sedimentary rocks. Geophysical Prospecting55, 609–625.
    [Google Scholar]
  13. BlakeO.O. and FaulknerD.R.2016. The effect of fracture density and stress state on the static and dynamic bulk moduli of Westerly granite. Journal of Geophysical Research: Solid Earth121, 2382–2399.
    [Google Scholar]
  14. CaiM.2010. Practical estimates of tensile strength and Hoek–Brown strength parameter mi of brittle rocks. Rock Mechanics and Rock Engineering43, 167–184.
    [Google Scholar]
  15. CanalJ., DelgadoJ., FalcónI., YangQ., JuncosaR. and BarrientosV.2013. Injection of CO2‐saturated water through a siliceous sandstone plug from the Hontomin Test Site (Spain): experiment and modeling. Environmental Science & Technology47, 159–167.
    [Google Scholar]
  16. ChichininaT., ObolentsevaI., GikL., BobrovB. and Ronquillo‐JarilloG.2009. Attenuation anisotropy in the linear‐slip model: interpretation of physical modeling data. Geophysics74, WB165–WB176.
    [Google Scholar]
  17. ChurcherP.L., FrenchP.R., ShawJ.C. and SchrammL.L.1991. Rock properties of Berea sandstone, Baker dolomite and Indiana limestone. SPE International Symposium on Oilfield Chemistry, Anaheim, CA, 20–22 February. Society of Petroleum Engineers.
    [Google Scholar]
  18. EissaE.A. and KaziA.1988. Relation between static and dynamic Young's moduli of rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts25, 479–482.
    [Google Scholar]
  19. EllisM.H., SinhaM.C., MinshullT.A., SothcottJ. and BestA.I.2010. An anisotropic model for the electrical resistivity of two‐phase geologic materials. Geophysics75, E161–E170.
    [Google Scholar]
  20. Falcon‐SuarezI., NorthL. and BestA.2014. Experimental rig to improve the geophysical and geomechanical understanding of CO2 reservoirs. Energy Procedia59, 75–81.
    [Google Scholar]
  21. Falcon‐SuarezI., Canal‐VilaJ., Delgado‐MartinJ., NorthL. and BestA.2016. Physical, Geochemical, Geomechanical, Geophysical and Hydrodynamic Characterization and Anisotropy Assessment of Corvio Sandstone. In: Supplement to: Falcon‐Suarez, Ismael; Canal‐Vila, Jacobo; Delgado‐Martin, Jordi; North, Laurence; Best, Angus: Characterization and multifaceted anisotropy assessment of Corvio Sandstone for geological CO2 storage studies. Geophysical Prospecting, accepted. PANGAEA.
    [Google Scholar]
  22. FarrellN.J.C., HealyD. and TaylorC.W.2014. Anisotropy of permeability in faulted porous sandstones. Journal of Structural Geology63, 50–67.
    [Google Scholar]
  23. FetterC.W.1993. Contaminant Hydrogeology, 2nd edn.New York, NY: Macmillan Publishing Company.
    [Google Scholar]
  24. FjærE.2009. Static and dynamic moduli of a weak sandstone. Geophysics74, WA103–WA112.
    [Google Scholar]
  25. FjærE., StroiszA.M. and HoltR.M.2013. Elastic dispersion derived from a combination of static and dynamic measurements. Rock Mechanics and Rock Engineering46, 611–618.
    [Google Scholar]
  26. FortinJ., SchubnelA. and GuéguenY.2005. Elastic wave velocities and permeability evolution during compaction of Bleurswiller sandstone. International Journal of Rock Mechanics & Mining Sciences42, 873–889.
    [Google Scholar]
  27. FortinJ., GuéguenY. and SchubnelA.2007. Effects of pore collapse and grain crushing on ultrasonic velocities and Vp/Vs. Journal of Geophysical Research112, B08207.
    [Google Scholar]
  28. FredrichJ.T., GreavesK.H. and MartinJ.W.1993. Pore geometry and transport properties of Fontainebleau sandstone. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts30, 691–697.
    [Google Scholar]
  29. GausI.2010. Role and impact of CO2‐rock interactions during CO2 storage in sedimentary rocks. International Journal of Greenhouse Gas Control4, 73–89.
    [Google Scholar]
  30. HakalaM., KuulaH. and HudsonJ.A.2007. Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: A case study of the Olkiluoto mica gneiss, Finland. International Journal of Rock Mechanics and Mining Sciences44, 14–46.
    [Google Scholar]
  31. HangxS.J.T., SpiersC.J. and PeachC.J.2010. Creep of simulated reservoir sands and coupled chemical‐mechanical effects of CO2 injection. Journal of Geophysical Research: Solid Earth115, B09205.
    [Google Scholar]
  32. HernándezJ.M., PujalteV., RoblesS. and Martín‐ClosasC.1999. División estratigráfica genética del Grupo Campóo (Malm‐Cretácico Inferior, SW Cuenca Vascocantábrica). Revista de la Sociedad Geológica de España12, 377–396.
    [Google Scholar]
  33. HoekE. and BrownE.T.1980. Underground Excavations in Rock. London, UK: The Institute of Mining and Metallurgy.
    [Google Scholar]
  34. HoekE., Carranza‐TorresC. and CorkumB.2002. Hoek‐Brown criterion–2002 edition. Proceedings of NARMS‐TAC Conference, Toronto, ON, Extended Abstracts, 267–273.
    [Google Scholar]
  35. ISRM
    ISRM1978. Suggested methods for determining the strength of rock materials in triaxial compression. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts15, 99–103.
    [Google Scholar]
  36. ISRM
    ISRM1983. Suggested methods for determining the strength of rock materials in triaxial compression: Revised version. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts20, 285–290.
    [Google Scholar]
  37. KingM.S.1983. Static and dynamic elastic properties of rocks from the Canadian shield. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts20, 237–241.
    [Google Scholar]
  38. KingM.S.2009. Recent developments in seismic rock physics. International Journal of Rock Mechanics and Mining Sciences46, 1341–1348.
    [Google Scholar]
  39. KleinE., BaudP., ReuschléT. and WongT.F.2001. Mechanical behaviour and failure mode of Bentheim sandstone under triaxial compression. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy26, 21–25.
    [Google Scholar]
  40. KrevorS.C., PiniR., ZuoL. and BensonS.M.2012. Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resources Research48, W02532.
    [Google Scholar]
  41. KutchkoB.G., StrazisarB.R., LowryG.V., DzombakD.A. and ThaulowN.2008. Rate of CO2 attack on hydrated class‐H well cement under geologic sequestration conditions. Environmental Science & Technology42, 6237–6242.
    [Google Scholar]
  42. LauJ.S. and ChandlerN.A.2004. Innovative laboratory testing. International Journal of Rock Mechanics and Mining Sciences41, 1427–1445.
    [Google Scholar]
  43. Le GuenY., RenardF., HellmannR., BrosseE., CollombetM., TisserandD.et al. 2007. Enhanced deformation of limestone and sandstone in the presence of high fluids. Journal of Geophysical Research: Solid Earth112, B05421.
    [Google Scholar]
  44. LeiX. and XueZ.2009. Ultrasonic velocity and attenuation during CO2 injection into water‐saturated porous sandstone: Measurements using difference seismic tomography. Physics of the Earth and Planetary Interiors176, 224–234.
    [Google Scholar]
  45. LiuF., LuP., GriffithC., HedgesS.W., SoongY., HellevangH.et al. 2012. CO2–brine–caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature. International Journal of Greenhouse Gas Control7, 153–167.
    [Google Scholar]
  46. LouisL., RobionP. and DavidC.2004. A single method for the inversion of anisotropic data sets with application to structural studies. Journal of Structural Geology26, 2065–2072.
    [Google Scholar]
  47. LuP., FuQ., SeyfriedJr. W.E., HerefordA. and ZhuC.2011. Navajo sandstone‐brine‐CO2 interaction: implications for geological carbon sequestration. Environmental Earth Sciences62, 101–118.
    [Google Scholar]
  48. MartinC.D. and ChandlerN.A.1994. The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts31, 643–659.
    [Google Scholar]
  49. MartínezJ.M. and SchmittD.R.2013. Anisotropic elastic moduli of carbonates and evaporites from the Weyburn‐Midale reservoir and seal rocks. Geophysical Prospecting61, 363–379.
    [Google Scholar]
  50. McCannC. and SothcottJ.1992. Laboratory measurements of the seismic properties of sedimentary rocks. Special Publications of the Geological Society of London65, 285–297.
    [Google Scholar]
  51. MikhaltsevitchV., LebedevM. and GurevichB.2014. Measurements of the elastic and anelastic properties of sandstone flooded with supercritical CO2 . Geophysical Prospecting62, 1266–1277.
    [Google Scholar]
  52. NakagawaS., KneafseyT.J., DaleyT.M., FreifeldB.M. and ReesE.V.2013. Laboratory seismic monitoring of supercritical CO2 flooding in sandstone cores using the Split Hopkinson resonant bar technique with concurrent X‐ray computed tomography imaging. Geophysical Prospecting61, 254–269.
    [Google Scholar]
  53. NakatsukaY., XueZ., GarciaH. and MatsuokaT.2010. Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements. International Journal of Greenhouse Gas Control4, 209–216.
    [Google Scholar]
  54. NguyenV.H., GlandN., DautriatJ., DavidC., WassermannJ. and GuélardJ.2013. Compaction, permeability evolution and stress path effects in unconsolidated sand and weakly consolidated sandstone. International Journal of Rock Mechanics and Mining Sciences67, 226–239.
    [Google Scholar]
  55. NicksiarM. and MartinC.D.2012. Evaluation of methods for determining crack initiation in compression tests on low‐porosity rocks. Rock Mechanics and Rock Engineering45, 607–617.
    [Google Scholar]
  56. NjiekakG., SchmittD.R., YamH. and KofmanR.S.2013. CO2 rock physics as part of the Weyburn‐Midale geological storage project. International Journal of Greenhouse Gas Control16, S118–S133.
    [Google Scholar]
  57. NorthL., BestA.I., SothcottJ. and MacGregorL.2013. Laboratory determination of the full electrical resistivity tensor of heterogeneous carbonate rocks at elevated pressures. Geophysical Prospecting61, 458–470.
    [Google Scholar]
  58. NorthL.J. and BestA.I.2014. Anomalous electrical resistivity anisotropy in clean reservoir sandstones. Geophysical Prospecting62, 1315–1326.
    [Google Scholar]
  59. OhJ., KimK.‐Y., HanW.S., KimT., KimJ.‐C. and ParkE.2013. Experimental and numerical study on supercritical CO2/brine transport in a fractured rock: Implications of mass transfer, capillary pressure and storage capacity. Advances in Water Resources62, 442–453.
    [Google Scholar]
  60. OjalaI.O., NgwenyaB.T. and MainI.G.2004. Loading rate dependence of permeability evolution in porous Aeolian sandstones. Journal of Geophysical Research109, B01204.
    [Google Scholar]
  61. PiniR., KrevorS.C.M. and BensonS.M.2012. Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions. Advances in Water Resources38, 48–59.
    [Google Scholar]
  62. PtakT., PiepenbrinkM. and MartacE.2004. Tracer tests for the investigation of heterogeneous porous media and stochastic modelling of flow and transport—A review of some recent developments. Journal of Hydrology294, 122–163.
    [Google Scholar]
  63. RaeP.J., BrownE.N. and OrlerE.B.2007. The mechanical properties of poly(ether‐ether‐ketone) (PEEK) with emphasis on the large compressive strain response. Polymer48, 598–615.
    [Google Scholar]
  64. RouquerolJ., AvnirD., FairbridgeC.W., EverettD.H., HaynesJ.M., PerniconeN.et al. 1994. Recommendations for the characterization of porous solids. Pure and Applied Chemistry66, 1739–1758.
    [Google Scholar]
  65. RutqvistJ.2012. The geomechanics of CO2 storage in deep sedimentary formations. Geotechnical and Geological Engineering30, 525–551.
    [Google Scholar]
  66. SchubnelA., BensonP., ThompsonB., HazzardJ. and YoungR.2006. Quantifying damage, saturation and anisotropy in cracked rocks by inverting elastic wave velocities. Pure and Applied Geophysics163, 947–973.
    [Google Scholar]
  67. ShackelfordC.D., MalusisM.A., MajeskiM.J. and SternR.T.1999. Electrical conductivity breakthrough curves. Journal of Geotechnical and Geoenvironmental Engineering125, 260–270.
    [Google Scholar]
  68. SimC.Y. and AdamL.2015. Are seismic velocity time‐lapse changes due to fluid substitution or matrix dissolution? A CO2 sequestration study at Pohokura Field, New Zealand. SEG Technical Program Expanded Abstracts, 3123–3128.
    [Google Scholar]
  69. SongI. and RennerJ.2008. Hydromechanical properties of Fontainebleau sandstone: Experimental determination and micromechanical modelling. Journal of Geophysical Research113, B09211.
    [Google Scholar]
  70. SongJ. and ZhangD.2012. Comprehensive review of caprock‐sealing mechanisms for geologic carbon sequestration. Environmental Science & Technology47, 9–22.
    [Google Scholar]
  71. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  72. VialleS. and VanorioT.2011. Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2‐saturated water. Geophysical Research Letters38, L01302.
    [Google Scholar]
  73. WangZ.2002. Seismic anisotropy in sedimentary rocks, Part 1: a single‐plug laboratory method. Geophysics67, 1415–1422.
    [Google Scholar]
  74. XuX., HofmannR., BatzleM. and TsheringT.2006. Influence of pore pressure on velocity in low‐porosity sandstone: Implications for time‐lapse feasibility and pore‐pressure study. Geophysical Prospecting54, 565–573.
    [Google Scholar]
  75. XueZ. and OhsumiT.2004. Seismic wave monitoring of CO2 migration in water‐saturated porous sandstone. Exploration Geophysics35, 25–32.
    [Google Scholar]
  76. XueZ. and LeiX.2006. Laboratory study of CO2 migration in water‐saturated anisotropic sandstone, based on P‐wave velocity imaging. Exploration Geophysics37, 10–18.
    [Google Scholar]
  77. ZhanX., SchwartzL.M., Nafi‐ToksozM., SmithW.C. and Dale‐MorganF. (2010). Pore‐scale modeling of electrical and fluid transport in Berea sandstone. Geophysics75, F135F142.
    [Google Scholar]
  78. ZhuW. and WongT.F.1996. Permeability evolution in a dilating rock: network modelling of damage and tortuosity. Geophysical Research Letters23, 3099–3102.
    [Google Scholar]
  79. ZhuY. and TsvankinI.2006. Plane‐wave propagation in attenuative transversely isotropic media. Geophysics71, T17–T30.
    [Google Scholar]
  80. ZhuY., TsvankinI., DewanganP. and WijkK.V.2007. Physical modeling and analysis of P‐wave attenuation anisotropy in transversely isotropic media. Geophysics72, D1–D7.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12469
Loading
/content/journals/10.1111/1365-2478.12469
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): CO2 storage , Corvio sandstone , EOR , Permeability , Strength , Wave velocities and Weak anisotropy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error