1887
Volume 65, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

A method for interpolation of multicomponent streamer data based on using the local directionality structure is presented. The derivative components are used to estimate a vector field that locally describes the direction with the least variability. Given this vector field, the interpolation can be phrased in terms of the solution of a partial differential equation that describes how energy is transported between regions of missing data. The approach can be efficiently implemented using readily available routines for computer graphics. The method is robust to noise in the measurements and particularly towards high levels of low‐frequent noise that is present in the derivative components of the multicomponent streamer data.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12478
2017-02-01
2024-04-19
Loading full text...

Full text loading...

References

  1. AbmaR. and KabirN.2005. Comparisons of interpolation methods. The Leading Edge24(10), 984–989.
    [Google Scholar]
  2. AmundsenL.2001. Elimination of free‐surface related multiples without need of the source wavelet. Geophysics66, 327–341.
    [Google Scholar]
  3. AmundsenL., WegleinA.B. and ReitanA.2013. On seismic deghosting using integral representation for the wave equation: use of Green's functions with Neumann or Dirichlet boundary conditions. Geophysics78(4), T89–T98.
    [Google Scholar]
  4. AnderssonF. and CarlssonM.2016. Fixed point algorithms for detection of parabolic events. SEG annual meeting.
  5. AnderssonF., CarlssonM., TourneretJ.‐Y. and WendtH.2013. On an iterative method for direction of arrival estimation using multiple frequencies. In: IEEE 5th International Workshop on Computational Advances in Multi‐Sensor Adaptive Processing (CAMSAP), pp. 328–331. Institute of Electrical and Electronics Engineers.
    [Google Scholar]
  6. AnderssonF., CarlssonM., TourneretJ.‐Y. and WendtH.2015. A method for 3d direction of arrival estimation for general arrays using multiple frequencies. In: IEEE 6th International Workshop on Computational Advances in Multi‐Sensor Adaptive Processing (CAMSAP), pp. 325–328. Institute of Electrical and Electronics Engineers.
    [Google Scholar]
  7. AnderssonF. and DuchkovA.A.2013. Extended structure tensors for multiple directionality estimation. Geophysical Prospecting61(6), 1135–1149.
    [Google Scholar]
  8. AnderssonF., MorimotoY. and WittstenJ.2015. A variational formulation for interpolation of seismic traces with derivative information. Inverse Problems31(5), 055002.
    [Google Scholar]
  9. BaumsteinA.2008. An upside‐down approach to efficient surface‐related and interbed multiple prediction. 78th SEG annual international meeting, Expanded Abstracts27, 2466–2470.
    [Google Scholar]
  10. CozziP. and RiccioC.2012. OpenGL Insights. CRC Press.
    [Google Scholar]
  11. de PronyB.G.R.1795. Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l'alkool, a différentes températures. Journal de l'École Polytechnique1(22), 24–76.
    [Google Scholar]
  12. HaleD.2011. Structure‐oriented bilateral filtering of seismic images. SEG annual meeting.
  13. HolvikE.2003. Betti designature and elastic demultiple of multi‐component seismic data . PhD thesis, Norwegian University of Science and Technology, Norway.
  14. KnutssonH.1989. Representing local structure using tensors. 6th Scandinavian Conference on Image Analysis, Oulu, Finland, pp. 244–251. Linköping University Electronic Press.
    [Google Scholar]
  15. KumarR., Da SilvaC., AkalinO., AravkinA.Y., MansourH., RechtB. et al. 2015. Efficient matrix completion for seismic data reconstruction. Geophysics80(5), V97–V114.
    [Google Scholar]
  16. Malcolm LansleyR.2004. CMP fold: a meaningless number? The Leading Edge23(10), 1038–1041.
    [Google Scholar]
  17. LiuB. and SacchiM.D.2004. Minimum weighted norm interpolation of seismic records. Geophysics69(6), 1560–1568.
    [Google Scholar]
  18. MellierG., MaplesM., HeppJ., LeBoeufS. and LansleyM.2014. A new multisensor solid streamer. 84th SEG annual international meeting, Expanded Abstracts, 228–232.
  19. NaghizadehM.2016. Double‐weave 3d seismic acquisition—Part 1: sampling and sparse Fourier reconstruction. Geophysics80(6), WD143–WD162.
    [Google Scholar]
  20. NaghizadehM. and SacchiM.D.2010. Seismic data reconstruction using multidimensional prediction filters. Geophysical Prospecting58(2), 157–173.
    [Google Scholar]
  21. OropezaV. and SacchiM.2011. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics76(3), V25–V32.
    [Google Scholar]
  22. PharezS., HendrickN. and TenghamnR.2008. First look at seismic data from a towed dual‐sensor streamer. The Leading Edge27(7), 904–907.
    [Google Scholar]
  23. RamírezA.C.2013. Analysis of data‐driven internal multiple prediction. Journal of Seismic Exploration24, 105–128.
    [Google Scholar]
  24. RamírezA.C., AnderssonF., WiikT. and RisteP.2015. Data‐driven interpolation of multicomponent data by directionality tensors. 77th EAGE Conference and Exhibition.
    [Google Scholar]
  25. RobinsonE. and ClarkD.1991. Sampling and the Nyquist frequency. The Leading Edge10(3), 51–53.
    [Google Scholar]
  26. SpitzS.1991. Seismic trace interpolation in the FX domain. Geophysics56(6), 785–794.
    [Google Scholar]
  27. TradD.2009. Five‐dimensional interpolation: recovering from acquisition constraints. Geophysics74(6), V123–V132.
    [Google Scholar]
  28. TrickettS., BurroughsL., MiltonA., WaltonL., DackR.et al. 2010. Rank‐reduction‐based trace interpolation. SEG annual meeting.
  29. van ManenD.‐J., ChristieP., EggenbergerK., VassalloM., ÖzbekA., ZerougS.et al. 2012. Increasing spatial and temporal bandwidth with multi‐component streamer data. 74th EAGE Conference & Exhibition ‐ Workshops, Fast‐Evolving Marine Broad‐band Technologies ‐ Are we Delivering up to Expectations? 13, 1524–1532.
    [Google Scholar]
  30. Van VlietL.J. and VerbeekP.W.1995. Estimators for orientation and anisotropy in digitized images. ASCI Imaging Workshop, Venray, The Netherlands, October 25–27.
    [Google Scholar]
  31. VassalloM., ÖzbekA., EggenbergerK., ÖzdemirK., van ManenD.‐J. and RobertssonJ.O.A.2011. Matching pursuit methods applied to multicomponent marine seismic acquisition–The issue of crossline aliasing. 73rd EAGE Conference & Exhibition.
    [Google Scholar]
  32. VassalloM., ÖzbekA., ÖzdemirK. and EggenbergerK.2010. Crossline wavefield reconstruction from multicomponent streamer data: Part 1–Multichannel interpolation by matching pursuit (MIMAP) using pressure and its crossline gradient. Geophysics75(6), WB53–WB67.
    [Google Scholar]
  33. VermeerG.J.O.2002. 3‐D Seismic Survey Design. Geophysical References Series. Society of Exploration Geophysicists.
    [Google Scholar]
  34. WangY., BaleR., GrionS. and HoldenJ.2010. The ups and downs of ocean‐bottom seismic processing: applications of wavefield separation and up‐down deconvolution. The Leading Edge29(10), 1258–1265.
    [Google Scholar]
  35. WegleinA.B. and DragosetW.H.2005. Multiple Attenuation. Geophysics Reprint Series. Society of Exploration Geophysicists.
    [Google Scholar]
  36. WeickertJ.1998. Anisotropic Diffusion in Image Processing, Vol. 1. Teubner Stuttgart.
    [Google Scholar]
  37. YarmanE. and RamírezA.C.2013. Directional wavefield decomposition. Geophysics78(2), WA71–WA76.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12478
Loading
/content/journals/10.1111/1365-2478.12478
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Data processing; Multicomponent; Rays; Seismics; Theory; Wave

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error