1887
Volume 65, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In Part I of this paper, we defined a focusing wave field as the time reversal of an observed point‐source response. We showed that emitting a time‐reversed field from a closed boundary yields a focal spot that acts as an isotropic virtual source. However, when emitting the field from an open boundary, the virtual source is highly directional and significant artefacts occur related to multiple scattering. The aim of this paper is to discuss a focusing wave field, which, when emitted into the medium from an open boundary, yields an isotropic virtual source and does not give rise to artefacts. We start the discussion from a horizontally layered medium and introduce the single‐sided focusing wave field in an intuitive way as an inverse filter. Next, we discuss single‐sided focusing in two‐dimensional and three‐dimensional inhomogeneous media and support the discussion with mathematical derivations. The focusing functions needed for single‐sided focusing can be retrieved from the single‐sided reflection response and an estimate of the direct arrivals between the focal point and the accessible boundary. The focal spot, obtained with this single‐sided data‐driven focusing method, acts as an isotropic virtual source, similar to that obtained by emitting a time‐reversed point‐source response from a closed boundary.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12495
2017-04-05
2020-04-02
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.1980. Quantitative Seismology, Vol. I. San Francisco, CA: W.H. Freeman and Company.
    [Google Scholar]
  2. AnsteyN.A. and O'DohertyR.F.1971. Reflections on amplitudes. Geophysical Prospecting19, 430–458.
    [Google Scholar]
  3. BeckerT., ElisonP., van ManenD.‐J., DonahueC., GreenhalghS., BrogginiF. and RobertssonJ.O.A.2016. Experimental Marchenko focusing in a variable diameter sound wave tube. 86th SEG annual international meeting, Expanded Abstracts, 5144–5148.
  4. BerkhoutA.J.1974. Related properties of minimum‐phase and zero‐phase time functions. Geophysical Prospecting22(4), 683–709.
    [Google Scholar]
  5. BerkhoutA.J.1982. Seismic Migration. Imaging of Acoustic Energy by Wave Field Extrapolation. A. Theoretical Aspects. Elsevier.
    [Google Scholar]
  6. BerkhoutA.J. and van Wulfften PaltheD.W.1979. Migration in terms of spatial deconvolution. Geophysical Prospecting27(1), 261–291.
    [Google Scholar]
  7. BerryhillJ.R.1984. Wave‐equation datuming before stack. Geophysics49, 2064–2066.
    [Google Scholar]
  8. BrackenhoffJ.2016. Rescaling of incorrect source strength using Marchenko redatuming . MSc thesis, Delft University of Technology, The Netherlands.
  9. BrogginiF. and SniederR.2012. Connection of scattering principles: a visual and mathematical tour. European Journal of Physics33, 593–613.
    [Google Scholar]
  10. BurridgeR.1980. The Gelfand‐Levitan, the Marchenko, and the Gopinath‐Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse‐response problems. Wave Motion2, 305–323.
    [Google Scholar]
  11. ChadanK. and SabatierP.C.1989. Inverse Problems in Quantum Scattering Theory. Berlin, Germany: Springer.
    [Google Scholar]
  12. DragosetB., VerschuurE., MooreI. and BisleyR.2010. A perspective on 3D surface‐related multiple elimination. Geophysics75, 75A245–75A261.
    [Google Scholar]
  13. FokkemaJ.T. and van den BergP.M.1993. Seismic Applications of Acoustic Reciprocity. Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  14. GeD.B.1987. An iterative technique in one‐dimensional profile inversion. Inverse Problems3, 399–406.
    [Google Scholar]
  15. HallidayD. and CurtisA.2010. An interferometric theory of source‐receiver scattering and imaging. Geophysics75(6), SA95–SA103.
    [Google Scholar]
  16. LambG.L.1980. Elements of Soliton Theory. New York, NY: John Wiley and Sons, Inc.
    [Google Scholar]
  17. MarchenkoV.A.1955. Reconstruction of the potential energy from the phases of the scattered waves (in Russian). Doklady Akademii Nauk SSSR104(5), 695–698.
    [Google Scholar]
  18. OristaglioM.L.1989. An inverse scattering formula that uses all the data. Inverse Problems5, 1097–1105.
    [Google Scholar]
  19. PorterR.P.1970. Diffraction‐limited, scalar image formation with holograms of arbitrary shape. Journal of the Optical Society of America60, 1051–1059.
    [Google Scholar]
  20. RavasiM., VasconcelosI., KritskiA., CurtisA., da CostaFilho C.A. and MelesG.A.2016. Target‐oriented Marchenko imaging of a North Sea field. Geophysical Journal International205, 99–104.
    [Google Scholar]
  21. RobinsonE.A.1954. Predictive decomposition of seismic traces with applications to seismic exploration . PhD thesis, Massachusetts Institute of Technology, USA.
  22. RobinsonE.A. and TreitelS.1976. Net downgoing energy and the resulting minimum‐phase property of downgoing waves. Geophysics41(6), 1394–1396.
    [Google Scholar]
  23. RoseJ.H.2001. “Single‐sided” focusing of the time‐dependent Schödinger equation. Physical Review A65, 012707.
    [Google Scholar]
  24. RoseJ.H.2002. ‘Single‐sided’ autofocusing of sound in layered materials. Inverse Problems18, 1923–1934.
    [Google Scholar]
  25. SinghS., SniederR., van der NeutJ., ThorbeckeJ., SlobE. and WapenaarK.2017. Accounting for free‐surface multiples in Marchenko imaging. Geophysics82(1), R19–R30.
    [Google Scholar]
  26. SlobE., WapenaarK., BrogginiF. and SniederR.2014. Seismic reflector imaging using internal multiples with Marchenko‐type equations. Geophysics79(2), S63–S76.
    [Google Scholar]
  27. SlobE.2016. Green's function retrieval and Marchenko imaging in a dissipative acoustic medium. Physical Review Letters116, 164301.
    [Google Scholar]
  28. SniederR., SheimanJ. and CalvertR.2006. Equivalence of the virtual‐source method and wave‐field deconvolution in seismic interferometry. Physical Review E73, 066620.
    [Google Scholar]
  29. TanterM., ThomasJ.‐L. and FinkM.2000. Time‐reversal and the inverse filter. Journal of the Acoustical Society of America108(1), 223–234.
    [Google Scholar]
  30. ThomsonC.J., KitchensideP.W. and FletcherR.P.2016. Theory of reflectivity blurring in seismic depth imaging. Geophysical Journal International205, 837–855.
    [Google Scholar]
  31. TreitelS. and RobinsonE.A.1964. The stability of digital filters. IEEE Transactions on Geoscience Electronics2(1), 6–18.
    [Google Scholar]
  32. van der NeutJ., ThorbeckeJ., WapenaarK. and SlobE.2015a. Inversion of the multidimensional Marchenko equation. 77th EAGE annual international meeting, Extended Abstracts, We‐N106‐04.
  33. van der NeutJ., VasconcelosI. and WapenaarK.2015b. On Green's function retrieval by iterative substitution of the coupled Marchenko equations. Geophysical Journal International203, 792–813.
    [Google Scholar]
  34. van der NeutJ., WapenaarK., ThorbeckeJ., SlobE. and VasconcelosI.2015c. An illustration of adaptive Marchenko imaging. The Leading Edge34, 818–822.
    [Google Scholar]
  35. van GroenestijnG.J.A. and VerschuurD.J.2010. Estimation of primaries by sparse inversion from passive seismic data. Geophysics75(4), SA61–SA69.
    [Google Scholar]
  36. VasconcelosI., van ManenD.‐J., RavasiM., WapenaarK. and van der NeutJ.2014. Marchenko redatuming: advantages and limitations in complex media. 84th SEG annual international meeting, Workshop W–11: Using Multiples as Signal for Imaging.
  37. VasconcelosI., WapenaarK., van der NeutJ., ThomsonC. and RavasiM.2015. Using inverse transmission matrices for Marchenko redatuming in highly complex media. 85th SEG annual international meeting, Expanded Abstracts, 5081–5086.
  38. VerschuurD.J., BerkhoutA.J. and WapenaarC.P.A.1992. Adaptive surface‐related multiple elimination. Geophysics57(9), 1166–1177.
    [Google Scholar]
  39. WapenaarC.P.A.1993. Kirchhoff‐Helmholtz downward extrapolation in a layered medium with curved interfaces. Geophysical Journal International115, 445–455.
    [Google Scholar]
  40. WapenaarC.P.A. and BerkhoutA.J.1989. Elastic wave field extrapolation. Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  41. WapenaarK. and SlobE.2014. On the Marchenko equation for multicomponent single‐sided reflection data. Geophysical Journal International199, 1367–1371.
    [Google Scholar]
  42. WapenaarK., van der NeutJ. and RuigrokE.2008. Passive seismic interferometry by multidimensional deconvolution. Geophysics73(6), A51–A56.
    [Google Scholar]
  43. WapenaarK., BrogginiF., SlobE. and SniederR.2013. Three‐dimensional single‐sided Marchenko inverse scattering, data‐driven focusing, Green's function retrieval, and their mutual relations. Physical Review Letters110, 084301.
    [Google Scholar]
  44. WapenaarK., ThorbeckeJ., van der NeutJ., BrogginiF., SlobE. and SniederR.2014. Marchenko imaging. Geophysics79(3), WA39–WA57.
    [Google Scholar]
  45. WapenaarK., ThorbeckeJ. and van der NeutJ.2016. A single‐sided homogeneous Green's function representation for holographic imaging, inverse scattering, time‐reversal acoustics and interferometric Green's function retrieval. Geophysical Journal International205, 531–535.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12495
Loading
/content/journals/10.1111/1365-2478.12495
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): Green's function retrieval , Multiples and Virtual source
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error