1887
Volume 65, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

A focusing acoustic wave field, emitted into a medium from its boundary, converges to a focal spot around the designated focal point. Subsequently, the focused field acts as a virtual source that emits a field propagating away from the focal point, mimicking the response to a real source at the position of the focal point. In this first part of a two‐part review paper on virtual sources and their responses, we define the focusing wave field as the time reversal of an observed point‐source response. This approach underlies time‐reversal acoustics and seismic interferometry. We analyse the propagation of a time‐reversed point‐source response through an inhomogeneous medium, paying particular attention to the effect of internal multiples. We investigate the differences between emitting the focusing field from a closed boundary and from an open boundary, and we analyse in detail the properties of the virtual source. Whereas emitting the time‐reversed field from a closed boundary yields an accurate isotropic virtual source, emitting the field from an open boundary leads to a highly directional virtual source and significant artefacts related to multiple scattering. The latter problems are addressed in Part II, where we define the focusing wave field as an inverse filter that accounts for primaries and multiples.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12496
2017-04-05
2024-04-19
Loading full text...

Full text loading...

References

  1. BakulinA. and CalvertR.2006. The virtual source method: Theory and case study. Geophysics71(4), SI139–SI150.
    [Google Scholar]
  2. BerkhoutA.J.1984. Seismic Migration. Imaging of Acoustic Energy by Wave Field Extrapolation: B. Practical Aspects. Elsevier.
    [Google Scholar]
  3. BerkhoutA.J. and WapenaarC.P.A.1993. A unified approach to acoustical reflection imaging. Part II: The inverse problem. Journal of the Acoustical Society of America93(4), 2017–2023.
    [Google Scholar]
  4. BerryhillJ.R.1984. Wave‐equation datuming before stack. Geophysics49, 2064–2066.
    [Google Scholar]
  5. BojarskiN.N.1983. Generalized reaction principles and reciprocity theorems for the wave equations, and the relationship between the time‐advanced and time‐retarded fields. Journal of the Acoustical Society of America74, 281–285.
    [Google Scholar]
  6. BoschiL. and WeemstraC.2015. Stationary‐phase integrals in the cross correlation of ambient noise. Reviews of Geophysics53, 411–451.
    [Google Scholar]
  7. BrogginiF. and SniederR.2012. Connection of scattering principles: a visual and mathematical tour. European Journal of Physics33, 593–613.
    [Google Scholar]
  8. CampilloM. and PaulA.2003. Long‐range correlations in the diffuse seismic coda. Science299, 547–549.
    [Google Scholar]
  9. ClaerboutJ.F.1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics33, 264–269.
    [Google Scholar]
  10. ClappR.G., FuH. and LindtjornO.2010. Selecting the right hardware for reverse time migration. The Leading Edge29, 48–58.
    [Google Scholar]
  11. CoulouvratF.1993. Continuous field radiated by a geometrically focused transducer: numerical investigation and comparison with an approximate model. Journal of the Acoustical Society of America94(3), 1663–1675.
    [Google Scholar]
  12. CurtisA. and HallidayD.2010. Directional balancing for seismic and general wavefield interferometry. Geophysics75(1), SA1–SA14.
    [Google Scholar]
  13. CurtisA., NicolsonH., HallidayD., TrampertJ. and BaptieB.2009. Virtual seismometers in the subsurface of the Earth from seismic interferometry. Nature Geoscience2, 700–704.
    [Google Scholar]
  14. de HoopA.T.1988. Time‐domain reciprocity theorems for acoustic wave fields in fluids with relaxation. Journal of the Acoustical Society of America84, 1877–1882.
    [Google Scholar]
  15. DerodeA., LaroseE., CampilloM. and FinkM.2003. How to estimate the Green's function of a heterogeneous medium between two passive sensors? Application to acoustic waves. Applied Physics Letters83(15), 3054–3056.
    [Google Scholar]
  16. DerodeA., LaroseE., TanterM., de RosnyJ., TourinA., CampilloM.et al. 2003. Recovering the Green's function from field‐field correlations in an open scattering medium (L). Journal of the Acoustical Society of America113(6), 2973–2976.
    [Google Scholar]
  17. DoumaJ. and SniederR.2015. Focusing of elastic waves for microseismic imaging. Geophysical Journal International200, 390–401.
    [Google Scholar]
  18. DraganovD., CampmanX., ThorbeckeJ., VerdelA. and WapenaarK.2009. Reflection images from ambient seismic noise. Geophysics74(5), A63–A67.
    [Google Scholar]
  19. DrinkwaterB.W. and WilcoxP.D.2006. Ultrasonic arrays for non‐destructive evaluation: a review. NDT & E International39(7), 525–541.
    [Google Scholar]
  20. EsmersoyC. and OristaglioM.1988. Reverse‐time wave‐field extrapolation, imaging, and inversion. Geophysics53, 920–931.
    [Google Scholar]
  21. EtgenJ., GrayS.H. and ZhangY.2009. An overview of depth imaging in exploration geophysics. Geophysics74(6), WCA5–WCA17.
    [Google Scholar]
  22. FinkM.1997. Time reversed acoustics. Physics Today50, 34–40.
    [Google Scholar]
  23. FinkM. and PradaC.2001. Acoustic time‐reversal mirrors. Inverse Problems17, R1–R38.
    [Google Scholar]
  24. FokkemaJ.T. and van den BergP.M.1993. Seismic Applications of Acoustic Reciprocity. Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  25. GajewskiD. and TessmerE.2005. Reverse modelling for seismic event characterization. Geophysical Journal International163, 276–284.
    [Google Scholar]
  26. GouédardP., StehlyL., BrenguierF., CampilloM., Colin de VerdièreY., LaroseE.et al. 2008. Cross‐correlation of random fields: mathematical approach and applications. Geophysical Prospecting56, 375–393.
    [Google Scholar]
  27. HallidayD.F., CurtisA., VermeerP., StrobbiaC., GlushchenkoA., van ManenD.‐J.et al. 2010. Interferometric ground‐roll removal: attenuation of scattered surface waves in single‐sensor data. Geophysics75(2), SA15–SA25.
    [Google Scholar]
  28. HemonCh.1978. Equations d'onde et modeles. Geophysical Prospecting26, 790–821.
    [Google Scholar]
  29. JonesI.F.2014. Tutorial: migration imaging conditions. First Break32(12), 45–55.
    [Google Scholar]
  30. LangenbergK.J., BergerM., KreutterT., MayerK. and SchmitzV.1986. Synthetic aperture focusing technique signal processing. NDT International19(3), 177–189.
    [Google Scholar]
  31. LarmatC., GuyerR.A. and JohnsonP.A.2010. Time‐reversal methods in geophysics. Physics Today63(8), 31–35.
    [Google Scholar]
  32. LeroseyG., de RosnyJ., TourinA. and FinkM.2007. Focusing beyond the diffraction limit with far‐field time reversal. Science315, 1120–1122.
    [Google Scholar]
  33. LinF.‐C., RitzwollerM.H. and SniederR.2009. Eikonal tomography: surface wave tomography by phase front tracking across a regional broad‐band seismic array. Geophysical Journal International177, 1091–1110.
    [Google Scholar]
  34. LiuF., ZhangG., MortonS.A. and LeveilleJ.P.2011. An effective imaging condition for reverse‐time migration using wavefield decomposition. Geophysics76, S29–S39.
    [Google Scholar]
  35. MadsenE.L., GoodsittM.M. and ZagzebskiJ.A.1981. Continuous waves generated by focused radiators. Journal of the Acoustical Society of America70(5), 1508–1517.
    [Google Scholar]
  36. McMechanG.A.1982. Determination of source parameters by wavefield extrapolation. Geophysical Journal of the Royal Astronomical Society71, 613–628.
    [Google Scholar]
  37. McMechanG.A.1983. Migration by extrapolation of time‐dependent boundary values. Geophysical Prospecting31, 413–420.
    [Google Scholar]
  38. MehtaK., BakulinA., SheimanJ., CalvertR. and SniederR.2007. Improving the virtual source method by wavefield separation. Geophysics72(4), V79–V86.
    [Google Scholar]
  39. OristaglioM.L.1989. An inverse scattering formula that uses all the data. Inverse Problems5, 1097–1105.
    [Google Scholar]
  40. PorterR.P.1970. Diffraction‐limited, scalar image formation with holograms of arbitrary shape. Journal of the Optical Society of America60, 1051–1059.
    [Google Scholar]
  41. RybergT.2011. Body wave observations from cross‐correlations of ambient seismic noise: a case study from the Karoo, RSA. Geophysical Research Letters38, L13311.
    [Google Scholar]
  42. SabraK.G., GerstoftP., RouxP., KupermanW.A. and FehlerM.C.2005. Surface wave tomography from microseisms in Southern California. Geophysical Research Letters32, L14311.
    [Google Scholar]
  43. SchusterG.T.2001. Theory of daylight/interferometric imaging: tutorial. 63rd EAGE annual international meeting, Extended Abstracts, A32.
  44. SchusterG.T.2009. Seismic Interferometry. Cambridge University Press.
    [Google Scholar]
  45. ShapiroN.M., CampilloM., StehlyL. and RitzwollerM.H.2005. High‐resolution surface‐wave tomography from ambient seismic noise. Science307, 1615–1618.
    [Google Scholar]
  46. SniederR.2004. Extracting the Green's function from the correlation of coda waves: a derivation based on stationary phase. Physical Review E69, 046610.
    [Google Scholar]
  47. SniederR., MiyazawaM., SlobE., VasconcelosI. and WapenaarK.2009. A comparison of strategies for seismic interferometry. Surveys in Geophysics30, 503–523.
    [Google Scholar]
  48. van der NeutJ., ThorbeckeJ., MehtaK., SlobE. and WapenaarK.2011. Controlled‐source interferometric redatuming by crosscorrelation and multidimensional deconvolution in elastic media. Geophysics76(4), SA63–SA76.
    [Google Scholar]
  49. van der NeutJ., WapenaarK., ThorbeckeJ., SlobE. and VasconcelosI.2015. An illustration of adaptive Marchenko imaging. The Leading Edge34, 818–822.
    [Google Scholar]
  50. van ManenD.‐J., RobertssonJ.O.A. and CurtisA.2005. Modeling of wave propagation in inhomogeneous media. Physical Review Letters94, 164301.
    [Google Scholar]
  51. VasconcelosI. and SniederR.2008a. Interferometry by deconvolution: Part 1—Theory for acoustic waves and numerical examples. Geophysics73(3), S115–S128.
    [Google Scholar]
  52. VasconcelosI. and SniederR.2008b. Interferometry by deconvolution: Part 2—Theory for elastic waves and application to drill‐bit seismic imaging. Geophysics73(3), S129–S141.
    [Google Scholar]
  53. VasconcelosI., SniederR. and DoumaH.2009. Representation theorems and Green's function retrieval for scattering in acoustic media. Physical Review E80, 036605.
    [Google Scholar]
  54. WapenaarK.2004. Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letters93, 254301.
    [Google Scholar]
  55. WapenaarK., DraganovD., ThorbeckeJ. and FokkemaJ.2002. Theory of acoustic daylight imaging revisited. 72nd SEG annual international meeting, Expanded Abstracts, 2269–2272.
  56. WapenaarK., FokkemaJ. and SniederR.2005. Retrieving the Green's function in an open system by cross‐correlation: a comparison of approaches (L). Journal of the Acoustical Society of America118, 2783–2786.
    [Google Scholar]
  57. WapenaarK., SlobE. and SniederR.2008. Seismic and electromagnetic controlled‐source interferometry in dissipative media. Geophysical Prospecting56, 419–434.
    [Google Scholar]
  58. WapenaarK., DraganovD., SniederR., CampmanX. and VerdelA.2010. Tutorial on seismic interferometry: Part 1—Basic principles and applications. Geophysics75(5), 75A195–75A209.
    [Google Scholar]
  59. WapenaarK., van der NeutJ., RuigrokE., DraganovD., HunzikerJ., SlobE.et al. 2011. Seismic interferometry by crosscorrelation and by multidimensional deconvolution: a systematic comparison. Geophysical Journal International185, 1335–1364.
    [Google Scholar]
  60. WapenaarK., ThorbeckeJ., van der NeutJ., BrogginiF., SlobE. and SniederR.2014. Marchenko imaging. Geophysics79(3), WA39–WA57.
    [Google Scholar]
  61. WeaverR.L. and LobkisO.I.2001. Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Physical Review Letters87, 134301.
    [Google Scholar]
  62. WhitmoreN.D.1983. Iterative depth migration by backward time propagation. 53rd SEG annual international meeting, Expanded Abstracts, 382–385.
  63. ZhangY. and SunJ.2009. Practical issues in reverse time migration: true amplitude gathers, noise removal and harmonic source encoding. First Break27(1), 53–59.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12496
Loading
/content/journals/10.1111/1365-2478.12496
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): Green's function retrieval; Multiples; Virtual source

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error