1887
Volume 66 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The injection of CO at the Ketzin pilot CO storage site started in June 2008 and ended in August 2013. During the 62 months of injection, a total amount of about 67 kt of CO was injected into a saline aquifer. A third repeat three‐dimensional seismic survey, serving as the first post‐injection survey, was acquired in 2015, aiming to investigate the recent movement of the injected CO. Consistent with the previous two time‐lapse surveys, a predominantly west–northwest migration of the gaseous CO plume in the up‐dip direction within the reservoir is inferred in this first post‐injection survey. No systematic anomalies are detected through the reservoir overburden. The extent of the CO plume west of the injection site is almost identical to that found in the 2012 second repeat survey (after injection of 61 kt); however, there is a significant decrease in its size east of the injection site. Assessment of the CO plume distribution suggests that the decrease in the size of the anomaly may be due to multiple factors, such as limited vertical resolution, CO dissolution, and CO migration into thin layers, in addition to the effects of ambient noise. Four‐dimensional seismic modelling based on dynamic flow simulations indicates that a dynamic balance between the newly injected CO after the second repeat survey and the CO migrating into thin layers and being dissolved was reached by the time of the first post‐injection survey. In view of the significant uncertainties in CO mass estimation, both patchy and non‐patchy saturation models for the Ketzin site were taken into consideration.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12497
2017-06-13
2020-04-06
Loading full text...

Full text loading...

References

  1. ArtsR., EikenO., ChadwickA., ZweigelP., Van der MeerL. and ZinsznerB.2004. Monitoring of CO2 injected at Sleipner using time‐lapse seismic data. Energy29, 1383–1392.
    [Google Scholar]
  2. BarthJ., NowakM., ZimmerM., NordenB. and van GeldernR.2015. Monitoring of cap‐rock integrity during CCS from field data at the Ketzin pilot site (Germany): evidence from gas composition and stable carbon isotopes. International Journal of Greenhouse Gas Control43, 133–140.
    [Google Scholar]
  3. BaumannG., HenningesJ. and De LuciaM.2014. Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron‐gamma logging at the Ketzin pilot site. International Journal of Greenhouse Gas Control28, 134–146.
    [Google Scholar]
  4. BergmannP. and ChadwickA.2015. Volumetric bounds on subsurface fluid substitution using 4D seismic time shifts with an application at Sleipner, North Sea. Geophysics80, B153–B165.
    [Google Scholar]
  5. BergmannP., YangC., LüthS., JuhlinC. and CosmaC.2011. Time‐lapse processing of 2D seismic profiles with testing of static correction methods at the CO2 injection site Ketzin (Germany). Journal of Applied Geophysics75, 124–139.
    [Google Scholar]
  6. BergmannP., KashubinA., IvandicM., LüthS. and JuhlinC.2014. Time‐lapse difference static correction using prestack crosscorrelations: 4D seismic image enhancement case from Ketzin. Geophysics79, B243–B252.
    [Google Scholar]
  7. ChadwickA., WilliamsG., DelepineN., ClochardV., LabatK., SturtonS.et al. 2010. Quantitative analysis of time‐lapse seismic monitoring data at the Sleipner CO2 storage operation. The Leading Edge29, 170–177.
    [Google Scholar]
  8. ClassH., MahlL., AhmedW., NordenB., KühnM. and KempkaT.2015. Matching pressure measurements and observed CO2 arrival times with static and dynamic modelling at the Ketzin storage site. Energy Procedia76, 623–632.
    [Google Scholar]
  9. DanceT. and PatersonL.2016. Observations of carbon dioxide saturation distribution and residual trapping using core analysis and repeat pulsed‐neutron logging at the CO2CRC Otway site. International Journal of Greenhouse Gas Control47, 210–220.
    [Google Scholar]
  10. DimriV., SrivastavaR.P. and VedantiN.2012. Fractal Models in Exploration Geophysics: Application to Hydrocarbon Reservoirs. Elsevier.
    [Google Scholar]
  11. EllisD.V. and SingerJ.M.2007. Well Logging for Earth Scientists, 2nd edn., p. 692. Springer.
    [Google Scholar]
  12. FörsterA., NordenB., Zinck‐JrgensenK., FrykmanP., KulenkampffJ., SpangenbergE.et al. 2006. Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany. Environmental Geosciences13, 145–161.
    [Google Scholar]
  13. FörsterA., SchönerR., FörsterH.‐J., NordenB., BlaschkeA.‐W., LuckertJ.et al. 2010. Reservoir characterization of a CO2 storage aquifer: the Upper Triassic Stuttgart Formation in the Northeast German Basin. Marine and Petroleum Geology27, 2156–2172.
    [Google Scholar]
  14. GhaderiA. and LandrøM.2009. Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time‐lapse seismic data. Geophysics74, O17–O28.
    [Google Scholar]
  15. GrudeS., LandrøM., WhiteJ. and TorsæterO.2014. CO2 saturation and thickness predictions in the Tubåen Fm., Snøhvit field, from analytical solution and time‐lapse seismic data. International Journal of Greenhouse Gas Control29, 248–255.
    [Google Scholar]
  16. HansenO., GildingD., NazarianB., OsdalB., RingroseP., KristoffersenJ.‐B.et al. 2013. Snøhvit: the history of injecting and storing 1 Mt CO2 in the Fluvial Tubåen Fm. Energy Procedia37, 3565–3573.
    [Google Scholar]
  17. HuangF., JuhlinC., KempkaT., NordenB. and ZhangF.2015. Modeling 3D time‐lapse seismic response induced by CO2 by integrating borehole and 3D seismic data—a case study at the Ketzin pilot site, Germany. International Journal of Greenhouse Gas Control36, 66–77.
    [Google Scholar]
  18. HuangF., JuhlinC., HanL., KempkaT., LüthS. and ZhangF.2016. Quantitative evaluation of thin‐layer thickness and CO2 mass utilizing seismic complex decomposition at the Ketzin CO2 storage site, Germany. Geophysical Journal International207, 160–173.
    [Google Scholar]
  19. HuangF., JuhlinC., HanL., SopherD., IvandicM., NordenB.et al. 2017. Feasibility of utilizing wavelet phase to map the CO2 plume at the Ketzin pilot site, Germany. Geophysical Prospecting65, 523–543.
    [Google Scholar]
  20. IvandicM., YangC., LüthS., CosmaC. and JuhlinC.2012. Time‐lapse analysis of sparse 3D seismic data from the CO2 storage pilot site at Ketzin, Germany. Journal of Applied Geophysics84, 14–28.
    [Google Scholar]
  21. IvandicM., JuhlinC., LüthS., BergmannP., KashubinA., SopherD.et al. 2015. Geophysical monitoring at the Ketzin pilot site for CO2 storage: new insights into the plume evolution. International Journal of Greenhouse Gas Control32, 90–105.
    [Google Scholar]
  22. IvanovaA., KashubinA., JuhojunttiN., KummerowJ., HenningesJ., JuhlinC.et al. 2012. Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany. Geophysical Prospecting60, 957–973.
    [Google Scholar]
  23. IvanovaA., BergmannP., KummerowJ., YangC., LüthS. and JuhlinC.2013a. Seismic modeling of the AVO/AVA response to CO2 injection at the Ketzin Site, Germany. Energy Procedia40, 490–498.
    [Google Scholar]
  24. IvanovaA., JuhlinC., LenglerU., BergmannP., LüthS. and KempkaT.2013b. Impact of temperature on CO2 storage at the Ketzin site based on fluid flow simulations and seismic data. International Journal of Greenhouse Gas Control19, 775–784.
    [Google Scholar]
  25. JuhlinC., GieseR., Zinck‐JørgensenK., CosmaC., KazemeiniH., JuhojunttiN.et al. 2007. 3D baseline seismics at Ketzin, Germany: the CO2SINK project. Geophysics72, B121–B132.
    [Google Scholar]
  26. KashubinA., JuhlinC., MalehmirA., LüthS., IvanovaA. and JuhojunttiN.2011. A footprint of rainfall on land seismic data repeatability at the CO2 storage pilot site, Ketzin, Germany. 81st SEG annual meeting, San Antonio, USA, SEG Expanded Abstracts, 4165–4169.
  27. KazemeiniS.H.2009. Seismic investigations at the Ketzin CO2 injection site, Germany: applications to subsurface feature mapping and CO2 seismic response modeling. PhD thesis, Uppsala University, Sweden.
    [Google Scholar]
  28. KempkaT. and KühnM.2013. Numerical simulations of CO2 arrival times and reservoir pressure coincide with observations from the Ketzin pilot site, Germany. Environmental Earth Sciences70, 3675–3685.
    [Google Scholar]
  29. KempkaT., ClassH., GörkeU.‐J., NordenB., KolditzO., KühnM.et al. 2013. A dynamic flow simulation code intercomparison based on the revised static model of the Ketzin pilot site. Energy Procedia40, 418–427.
    [Google Scholar]
  30. KempkaT., De LuciaM. and KühnM.2014. Geomechanical integrity verification and mineral trapping quantification for the Ketzin CO2 storage pilot site by coupled numerical simulations. Energy Procedia63, 3330–3338.
    [Google Scholar]
  31. KraghE. and ChristieP.2002. Seismic repeatability, normalized rms, and predictability. The Leading Edge21, 640–647.
    [Google Scholar]
  32. KummerowJ. and SpangenbergE.2011. Experimental evaluation of the impact of the interactions of CO2‐SO2, brine, and reservoir rock on petrophysical properties: a case study from the Ketzin test site, Germany. Geochemistry, Geophysics, Geosystems12, 1–10.
    [Google Scholar]
  33. LüthS., IvanovaA. and KempkaT.2015. Conformity assessment of monitoring and simulation of CO2 storage: a case study from the Ketzin pilot site. International Journal of Greenhouse Gas Control42, 329–339.
    [Google Scholar]
  34. MartensS., KempkaT., LiebscherA., LüthS., MöllerF., MyrttinenA.et al. 2012. Europe's longest‐operating on‐shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environmental Earth Sciences67, 323–334.
    [Google Scholar]
  35. MartensS., MöllerF., StreibelM., LiebscherA.and the Ketzin Group . 2014. Completion of five years of safe CO2 injection and transition to the post‐closure phase at the Ketzin pilot site. Energy Procedia59, 190–197.
    [Google Scholar]
  36. MillerA.C. and HelgerudM.B.2009. 4D seismic repeatability: lessons from Hoover‐Madison‐Marshall. 79th SEG annual meeting, Houston, USA, SEG Expanded Abstracts, 3884–3888.
  37. MöllerF., LiebscherA. and Schmidt‐HattenbergerC.2016. Report on the dataset of the Brine Injection at the CO2 Storage Pilot Site Ketzin, Germany. Scientific Technical Report STR; 16/05, Potsdam: GFZ German Research Centre for Geosciences.
  38. NordenB. and FrykmanP.2013. Geological modelling of the Triassic Stuttgart Formation at the Ketzin CO2 storage site, Germany. International Journal of Greenhouse Gas Control19, 756–774.
    [Google Scholar]
  39. NordenB., FörsterA., Vu‐HoangD., MarcelisF., SpringerN. and Le NirI.2010. Lithological and petrophysical core‐log interpretation in CO2SINK, the European CO2 onshore research storage and verification project. SPE Reservoir Evaluation & Engineering13, 179–192.
    [Google Scholar]
  40. PlasekR., AdolphR., StollerC., WillisD., BordonE. and PortalM.1995. Improved pulsed neutron capture logging with slim carbon‐oxygen tools: methodology. SPE Annual Technical Conference and Exhibition, Dallas, TX, p. 15. Society of Petroleum Engineers.
    [Google Scholar]
  41. PrevedelB., MartensS., NordenB., HenningesJ. and FreifeldB.M.2014. Drilling and abandonment preparation of CO2 storage wells—experience from the Ketzin pilot site. Energy Procedia63, 6067–6078.
    [Google Scholar]
  42. RingroseP., MathiesonA., WrightI., SelamaF., HansenO., BissellR.et al. 2013. The In Salah CO2 storage project: lessons learned and knowledge transfer. Energy Procedia37, 6226–6236.
    [Google Scholar]
  43. RochelleC., Czernichowski‐LauriolI. and MilodowskiA.2004. The impact of chemical reactions on CO2 storage in geological formations: a brief review. Geological Society, London, Special Publications233, 87–106.
    [Google Scholar]
  44. SpanR. and WagnerW.1996. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data25, 1509–1596.
    [Google Scholar]
  45. StockerT., QinD., PlattnerG., TignorM., AllenS., BoschungJ.et al. 2013. Climate Change 2013: The Physical Science Basis. Cambridge University Press.
    [Google Scholar]
  46. XuZ., JuhlinC., GudmundssonO., ZhangF., YangC., KashubinA.et al. 2012. Reconstruction of subsurface structure from ambient seismic noise: an example from Ketzin, Germany. Geophysical Journal International189, 1085–1102.
    [Google Scholar]
  47. YangC., JuhlinC., EnescuN., CosmaC. and LuethS.2010. Moving source profile data processing, modelling and comparison with 3D surface seismic data at the CO2SINK project site, Ketzin, Germany. Near Surface Geophysics8, 601–610.
    [Google Scholar]
  48. YordkayhunS., JuhlinC., GieseR. and CosmaC.2007. Shallow velocity–depth model using first arrival traveltime inversion at the CO2SINK site, Ketzin, Germany. Journal of Applied Geophysics63, 68–79.
    [Google Scholar]
  49. ZhangF., JuhlinC., CosmaC., TryggvasonA. and PrattR.G.2012. Cross‐well seismic waveform tomography for monitoring CO2 injection: a case study from the Ketzin Site, Germany. Geophysical Journal International189, 629–646.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12497
Loading
/content/journals/10.1111/1365-2478.12497
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 4D, Time lapse , Reservoir monitoring , Seismic processing and Uncertainties
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error