1887
Volume 66, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We have developed a novel method for missing seismic data interpolation using ‐domain regularised nonstationary autoregression. regularised nonstationary autoregression interpolation can deal with the events that have space‐varying dips. We assume that the coefficients of regularised nonstationary autoregression are smoothly varying along the space axis. This method includes two steps: the estimation of the coefficients and the interpolation of missing traces using estimated coefficients. We estimate the regularised nonstationary autoregression coefficients for the completed data using weighted nonstationary autoregression equations with smoothing constraints. For regularly missing data, similar to Spitz interpolation, we use autoregression coefficients estimated from low‐frequency components without aliasing to obtain autoregression coefficients of high‐frequency components with aliasing. For irregularly missing or gapped data, we use known traces to establish nonstationary autoregression equations with regularisation to estimate the autoregression coefficients of the complete data. We implement the algorithm by iterated scheme using a frequency‐domain conjugate gradient method with shaping regularisation. The proposed method improves the calculation efficiency by applying shaping regularisation and implementation in the frequency domain. The applicability and effectiveness of the proposed method are examined by synthetic and field data examples.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12499
2017-10-16
2020-04-08
Loading full text...

Full text loading...

References

  1. AbmaR. and ClaerboutJ.1995. Lateral prediction for noise attenuation by t‐x and f‐x techniques. Geophysics60, 1187–1896.
    [Google Scholar]
  2. AbmaR. and KabirN.2006. 3D interpolation of irregular data with a POCS algorithm. Geophysics71, E91–E97.
    [Google Scholar]
  3. AboutajdineD., AdibA. and MezianeA.1996. Fast adaptive algorithms for AR parameters estimation using higher order statistics. IEEE Transactions on Signal Processing44, 1998–2009.
    [Google Scholar]
  4. ClaerboutJ.2010. Image estimation by example: geophysical soundings image construction. Stanford Exploration Project. http://sepwww.stanford.edu/sep/prof/.
    [Google Scholar]
  5. CrawleyS., ClaerboutJ. and ClappR.1999. Interpolation with smoothly nonstationary prediction‐error filters. 69th SEG annual international meeting, Expanded Abstracts, 1154–1157.
  6. FomelS. and LiuY.2010. Seislet transform and seislet frame. Geophysics75, V25–V38.
    [Google Scholar]
  7. FomelS.2007. Shaping regularization in geophysical‐estimation problems. Geophysics72, R29–R36.
    [Google Scholar]
  8. FomelS.2009. Adaptive multiple subtraction using regularized nonstationary regression. Geophysics74, V25–V33.
    [Google Scholar]
  9. GulunayN.2003. Seismic trace interpolation in the Fourier transform domain. Geophysics68, 355–369.
    [Google Scholar]
  10. HerrmannF. and HennenfentG.2008. Non‐parametric seismic data recovery with curvelet frames. Geophysical Journal International173, 233–248.
    [Google Scholar]
  11. HonigM.L. and MesserschmittD.G.1984. Adaptive Filters: Structures, Algorithms, and Applications. Kluwer.
    [Google Scholar]
  12. HuardI., MedinaS. and SpitzS.1996. F‐XY wavefield de‐aliasing for acquisition configurations leading to coarse sampling. 58th EAGE Conference and Exhibition, B039.
    [Google Scholar]
  13. LiuC., LiP., LiuY., WangD., FengX. and LiuD.2013. Iterative data interpolation beyond aliasing using seislet transform. Chinese Journal of Geophysics56, 1619–1627.
    [Google Scholar]
  14. LiuG. and ChenX.2013. Noncausal f‐x‐y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data. Journal of Applied Geophysics93, 60–66.
    [Google Scholar]
  15. LiuG., FomelS. and ChenX.2011. Time‐frequency analysis of seismic data using local attributes. Geophysics76, P23–P34.
    [Google Scholar]
  16. LiuG., ChenX., DuJ. and WuK.2012. Random noise attenuation using f‐x regularized nonstationary autoregression. Geophysics77, V61–V69.
    [Google Scholar]
  17. LiuY. and FomelS.2011. Seismic data interpolation beyond aliasing using regularized nonstationary autoregression. Geophysics76, V69–V77.
    [Google Scholar]
  18. LiuY., LiuN. and LiuC.2015. Adaptive prediction filtering in t‐x‐y domain for random noise attenuation using regularized nonstationary autoregression. Geophysics80, V13–V21.
    [Google Scholar]
  19. MaJ.2013. Three‐dimensional irregular seismic data reconstruction via low‐rank matrix completion. Geophysics78, V181–V192.
    [Google Scholar]
  20. NaghizadehM. and InnanenK.2011. Seismic data interpolation using a fast generalized Fourier transform. Geophysics76, V1–V10.
    [Google Scholar]
  21. NaghizadehM. and SacchiM.2009. f‐x adaptive seismic‐trace interpolation. Geophysics74, V9–V16.
    [Google Scholar]
  22. NaghizadehM. and SacchiM.2010. Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data. Geophysics75, WB189–WB202.
    [Google Scholar]
  23. PorsaniJ.1999. Seismic trace interpolation using half‐step prediction filters. Geophysics64, 1461–1467.
    [Google Scholar]
  24. SacchiM. and KuehlH.2001. ARMA formulation of FX prediction error filters and projection filters. Journal of Seismic Exploration9, 185–197.
    [Google Scholar]
  25. ShahidiR., TangG., MaJ. and HerrmannF.2013. Application of randomized sampling schemes to curvelet‐based sparsity‐promoting seismic data recovery. Geophysical Prospecting61, 973–997.
    [Google Scholar]
  26. SpitzS.1991. Seismic trace interpolation in the f‐x domain. Geophysics56, 785–794.
    [Google Scholar]
  27. TikhonovN.1963. Solution of Incorrectly Formulated Problems and the Regularization Method. Soviet Mathematics‐Doklady.
    [Google Scholar]
  28. WangB., WuR., ChenX. and LiJ.2015. Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform. Geophysical Journal International201, 1180–1192.
    [Google Scholar]
  29. WangY.2002. Seismic trace interpolation in the f‐x‐y domain. Geophysics67, 1232–1239.
    [Google Scholar]
  30. XuS., ZhangY. and LambaréG.2010. Antileakage Fourier transform for seismic data regularization in higher dimensions. Geophysics75, WB113–WB120.
    [Google Scholar]
  31. XuS., ZhangY., PhamD. and LambaréG.2005. Antileakage Fourier transform for seismic data regularization. Geophysics70, V87–V95.
    [Google Scholar]
  32. YangP., GaoJ. and ChenW.2012. Curvelet‐based POCS interpolation of nonuniformly sampled seismic records. Journal of Applied Geophysics79, 90–99.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12499
Loading
/content/journals/10.1111/1365-2478.12499
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Nonstationary autoregression , Regularisation , Seismic reconstruction and Trace interpolation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error