1887
image of A seismic reflection from isotropic‐fractured fluid‐saturated layer

Abstract

ABSTRACT

Average elastic properties of a fluid‐saturated fractured rock are discussed in association with the extremely slow and dispersive Krauklis wave propagation within individual fractures. The presence of the Krauklis wave increases P‐wave velocity dispersion and attenuation with decreasing frequency. Different laws (exponential, power, fractal, and gamma laws) of distribution of the fracture length within the rock show more velocity dispersion and attenuation of the P‐wave for greater fracture density, particularly at low seismic frequencies. The results exhibit a remarkable difference in the P‐wave reflection coefficient for frequency and angular dependency from the fractured layer in comparison with the homogeneous layer. The biggest variation in behaviour of the reflection coefficient versus incident angle is observed at low seismic frequencies. The proposed approach and results of calculations allow an interpretation of abnormal velocity dispersion, high attenuation, and special behaviour of reflection coefficients versus frequency and angle of incidence as the indicators of fractures.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12510
2017-05-11
2020-04-09
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.1980. Quantitative seismology: theory and methods. In: Series of books in geology, Vol. 1. W. H. Freeman.
    [Google Scholar]
  2. BakulinA., GrechkaV. and TsvankinI.2000. Estimation of fracture parameters from reflection seismic data—Part I: HTI model due to a single fracture set. Geophysics65(6), 1788–1802.
    [Google Scholar]
  3. BayukI. and ChesnokovE.1998. Correlation between elastic and transport properties of porous cracked anisotropic media. Physics and Chemistry of the Earth23(3), 361–366.
    [Google Scholar]
  4. BerrymanJ.G.2007. Seismic waves in rocks with fluids and fractures. Geophysical Journal International171(2), 954–974.
    [Google Scholar]
  5. BerrymanJ.G. and WangH.F.2000. Elastic wave propagation and attenuation in a double‐porosity dual‐permeability medium. International Journal of Rock Mechanics and Mining Sciences37(1), 63–78.
    [Google Scholar]
  6. BonnetE., BourO., OdlingN.E., DavyP., MainI., CowieP.et al. 2001. Scaling of fracture systems in geological media. Reviews of Geophysics39(3), 347–383.
    [Google Scholar]
  7. BortfeldR.1961. Approximation to the reflection and transmission coefficients of the plane longitudinal and transverse waves. Geophysical Prospecting9(4), 485–502.
    [Google Scholar]
  8. BourO. and DavyP.1997. Connectivity of random fault networks following a power law fault length distribution. Water Resources Research33(7), 1567–1583.
    [Google Scholar]
  9. BrekhovskikhL.M.1960. Waves in Layered Media. Academic, New York.
    [Google Scholar]
  10. BudianskyB. and O'ConnellR.J.1976. Elastic moduli of a cracked solid. International Journal of Solids and Structures12(2), 81–97.
    [Google Scholar]
  11. CarcioneJ.M., GurevichB., SantosJ.E. and PicottiS.2013. Angular and frequency‐dependent wave velocity and attenuation in fractured porous media. Pure and Applied Geophysics170(11), 1673–1683.
    [Google Scholar]
  12. CaspariE., MilaniM., RubinoJ., MüllerT.M., QuintalB. and HolligerK.2016. Numerical upscaling of frequency‐dependent p‐ and s‐wave moduli in fractured porous media. Geophysical Prospecting64(4), 1166–1179.
    [Google Scholar]
  13. FerrazziniV. and AkiK.1987. Slow waves trapped in a fluid‐filled infinite crack: implication for volcanic tremor. Journal of Geophysical Research: Solid Earth92(B9), 9215–9223.
    [Google Scholar]
  14. FrehnerM. and SchmalholzS.2010. Finite‐element simulations of Stoneley guided‐wave reflection and scattering at the tips of fluid‐filled fractures. Geophysics75(2), T23–T36.
    [Google Scholar]
  15. GoloshubinG., KrauklisP.V., MolotkovL.A. and HelleH.B.1994. Slow wave phenomenon at seismic frequencies. 63rd SEG annual international meeting, Washington, D.C., USA, Expanded Abstracts, 809–811.
  16. GrechkaV., VasconcelosI. and KachanovM.2006. The influence of crack shape on the effective elasticity of fractured rocks. Geophysics71(5), D153–D160.
    [Google Scholar]
  17. GreenwoodJ. and WilliamsonJ.1966. Contact of nominally flat surfaces. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 295, pp. 300–319.
  18. GroenenboomJ. and FalkJ.2000. Scattering by hydraulic fractures: finite‐difference modeling and laboratory data. Geophysics65(2), 612–622.
    [Google Scholar]
  19. HiltermanF.J.1989. Is AVO the seismic signature of rock properties? 1989 SEG annual meeting.
  20. HudsonJ.1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal of the Royal Astronomical Society64(1), 133–150.
    [Google Scholar]
  21. HudsonJ.2000. The effect of fluid pressure on wave speeds in a cracked solid. Geophysical Journal International143(2), 302–310.
    [Google Scholar]
  22. KorneevV.2008. Slow waves in fractures filled with viscous fluid. Geophysics73(1), N1–N7.
    [Google Scholar]
  23. KorneevV. and GoloshubinG.2015. Elastic properties of fluid‐saturated fractured rock. SEG Technical Program, Expanded Abstracts, 3202–3208.
  24. KorneevV., GoloshubinG., KashtanB., BakulinA., TroyanV., MaximovG.et al. 2012. Krauklis wave—Half a century after. 5th EAGE Saint Petersburg International Conference and Exhibition on Geosciences, April 2012.
  25. KozlovE.A.2004. Pressure‐dependent seismic response of fractured rock. Geophysics69(4), 885–897.
    [Google Scholar]
  26. KrauklisP.V.1962. About some low‐frequency oscillations of a liquid layer in elastic medium. PMM26(6), 1111–1115. in Russian.
    [Google Scholar]
  27. KrauklisP.V., GoloshubinG. and KrauklisL.1994. Slow wave in the porous layer. Zapiski Nauchnykh Seminarov POMI210, 146–153.
    [Google Scholar]
  28. KrauklisP., GoloshubinG. and KrauklisL.1997. A slow wave in a porous layer. Journal of Mathematical Sciences83(2), 259–263.
    [Google Scholar]
  29. KrylovaA. and GoloshubinG.2016. Low‐frequency seismic reflection from a fractured layer. In: 78th EAGE Conference and Exhibition, Vienna, Austria.
  30. MolotkovL.1979. Equivalence of periodic‐layered and transversally isotropic media. Mathematical Problems of the Theory of Wave Propagation. 101, 219–233.
    [Google Scholar]
  31. MolotkovL.1984. Matrix Method in the Theory of Wave Propagation in Layered Elastic and Liquid Media. Leningrad: Nauka.
    [Google Scholar]
  32. NagyP., BlahoG. and AdlerL.1993. Excess nonlinearity in materials containing microcracks. Review of Progress in Quantitative Nondestructive Evaluation. 13 B.
  33. NakagawaS. and KorneevV.2014. Effect of fracture compliance on wave propagation within a fluid‐filled fracture. The Journal of the Acoustical Society of America135(6), 3186–3197.
    [Google Scholar]
  34. NakagawaS., NakashimaS. and KorneevV.A.2016. Laboratory measurements of guided‐wave propagation within a fluid saturated fracture. Geophysical Prospecting64, 143–156.
    [Google Scholar]
  35. PecorariC.1997. Acoustoelasticity in cracked solids. Geophysical Journal International129(1), 169–175.
    [Google Scholar]
  36. PrideS.R. and BerrymanJ.G.2003. Linear dynamics of double‐porosity dual‐permeability materials. I. Governing equations and acoustic attenuation. Physical Review E68(3), 036603.
    [Google Scholar]
  37. RempeM., MitchellT., RennerJ., NippressS., Ben‐ZionY. and RockwellT.2013. Damage and seismic velocity structure of pulverized rocks near the San Andreas Fault. Journal of Geophysical Research: Solid Earth118(6), 2813–2831.
    [Google Scholar]
  38. RichardsP.G. and FrasierC.W.1976. Scattering of elastic waves from depth‐dependent inhomogeneities. Geophysics41(3), 441–458.
    [Google Scholar]
  39. RubinoJ.G., QuintalB., MüllerT.M., GuarracinoL., JänickeR., SteebH.et al. 2015. Energy dissipation of p‐ and s‐waves in fluid‐saturated rocks: an overview focusing on hydraulically connected fractures. Journal of Earth Science26(6), 785–790.
    [Google Scholar]
  40. SchoenbergM.1983. Reflection of elastic waves from periodically stratified media with interfacial slip. Geophysical Prospecting31(2), 265–292.
    [Google Scholar]
  41. SchoenbergM. and SayersC.1995. Seismic anisotropy of fractured rock. Geophysics60(1), 204–211.
    [Google Scholar]
  42. WalshJ. and GrosenbaughM.1979. A new model for analyzing the effect of fractures on compressibility. Journal of Geophysical Research: Solid Earth84(B7), 3532–3536.
    [Google Scholar]
  43. ZoeppritzK.1919. Erdbebenwellen vii, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch‐Physikalische Klasse 1919, 57–65.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12510
Loading
/content/journals/10.1111/1365-2478.12510
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: Krauklis wave; Fractures; Attenuation; Velocity dispersion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error