1887
image of Full waveform inversion of SH‐ and Love‐wave data in near‐surface prospecting

Abstract

ABSTRACT

We develop a two‐dimensional full waveform inversion approach for the simultaneous determination of S‐wave velocity and density models from SH ‐ and Love‐wave data. We illustrate the advantages of the SH/Love full waveform inversion with a simple synthetic example and demonstrate the method's applicability to a near‐surface dataset, recorded in the village Čachtice in Northwestern Slovakia. Goal of the survey was to map remains of historical building foundations in a highly heterogeneous subsurface. The seismic survey comprises two parallel SH‐profiles with maximum offsets of 24 m and covers a frequency range from 5 Hz to 80 Hz with high signal‐to‐noise ratio well suited for full waveform inversion. Using the Wiechert–Herglotz method, we determined a one‐dimensional gradient velocity model as a starting model for full waveform inversion. The two‐dimensional waveform inversion approach uses the global correlation norm as objective function in combination with a sequential inversion of low‐pass filtered field data. This mitigates the non‐linearity of the multi‐parameter inverse problem. Test computations show that the influence of visco‐elastic effects on the waveform inversion result is rather small. Further tests using a mono‐parameter shear modulus inversion reveal that the inversion of the density model has no significant impact on the final data fit. The final full waveform inversion S‐wave velocity and density models show a prominent low‐velocity weathering layer. Below this layer, the subsurface is highly heterogeneous. Minimum anomaly sizes correspond to approximately half of the dominant Love‐wavelength. The results demonstrate the ability of two‐dimensional SH waveform inversion to image shallow small‐scale soil structure. However, they do not show any evidence of foundation walls.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12549
2017-10-09
2020-08-15
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.1980. Quantitative Seismology. W.H. Freeman and Company.
    [Google Scholar]
  2. AndersonJ.E., TanL. and WangD.2012. Time‐reversal checkpointing methods for RTM and FWI. Geophysics77(4), S93–S103.
    [Google Scholar]
  3. BatemannH.1910. Die Lösung der Integralgleichung, welche die Fortpflanzungsgeschwindigkeit einer Erdbebenwelle im Inneren der Erde mit den Zeiten verbindet, die die Störung braucht, um zu verschiedenen Stationen auf der Erdoberfläche zu gelangen. Physikal. Zeitschr.11, 96–99.
    [Google Scholar]
  4. BauerS., BeyerC., DethlefsenF., DietrichP., DuttmannR., EbertM.et al. 2013. Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environmental Earth Sciences70(8), 3935–3943.
    [Google Scholar]
  5. Ben‐MenahemA. and SinghS.1981. Seismic Waves and Sources. New York, Heidelberg and Berlin: Springer Verlag.
    [Google Scholar]
  6. BohlenT.2002. Parallel 3‐D viscoelastic finite‐difference seismic modelling. Computers & Geosciences28(8), 887–899.
    [Google Scholar]
  7. BohlenT., KuglerS., KleinG. and TheilenF.2004. 1.5‐D inversion of lateral variation of Scholte wave dispersion. Geophysics69(2), 330–344.
    [Google Scholar]
  8. BretaudeauF., BrossierR., LeparouxD., OpertoS., AbrahamO. and VirieuxJ.2013. 2D elastic full waveform imaging of the near surface : application to a physical scale model. Near Surface Geophysics11(3), 307–316.
    [Google Scholar]
  9. BunksC., SaleckF., ZaleskiS. and ChaventG.1995. Multiscale seismic waveform inversion. Geophysics60(5), 1457–1473.
    [Google Scholar]
  10. CarmichaelR.S.1982. Handbook of Physical Properties of Rocks, Vol. II. CRC Press, Inc.
    [Google Scholar]
  11. ChoiY. and AlkhalifahT.2012. Application of multi‐source waveform inversion to marine streamer data using the global correlation norm. Geophysical Prospecting60, 748–758.
    [Google Scholar]
  12. CourantR., FriedrichsK. and LewyH.1928. Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen100, 32–74.
    [Google Scholar]
  13. DokterE.2015. 2D time domain waveform inversion of a near surface SH wave data set from Cachtice, Slovakia . Diploma thesis, Kiel University, Germany (available at https://www.researchgate.net/publication/283267106).
  14. ForbrigerT.2003a. Inversion of shallow‐seismic wavefields: I. Wavefield transformation. Geophysical Journal International153(3), 719–734.
    [Google Scholar]
  15. ForbrigerT.2003b. Inversion of shallow‐seismic wavefields: II. Inferring subsurface properties from wavefield transforms. Geophysical Journal International153(3), 735–752.
    [Google Scholar]
  16. ForbrigerT., GroosL. and SchäferM.2014. Line‐source simulation for shallow‐seismic data. Part 1: theoretical background. Geophysical Journal International198(3), 1387–1404.
    [Google Scholar]
  17. GabrielsP., SniederR. and NoletG.1987. In situ measurements of shearwave velocity in sediments with higher‐mode Rayleigh waves. Geophysical Prospecting35, 187–196.
    [Google Scholar]
  18. GieseP.1957. Die Bestimmung der elastischen Eigenschaften und der Mächtigkeit von Lockerböden mit Hilfe von speziellen Rayleigh‐Wellen. Gerl. Beitr. z. Geophys. 66, 274–312.
    [Google Scholar]
  19. GriewankA.1992. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optimization Methods and Software1(1), 35–54.
    [Google Scholar]
  20. GriewankA. and WaltherA.2000. Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Software26(1), 19–45.
    [Google Scholar]
  21. GroosL.2013. 2D full waveform inversion of shallow seismic Rayleigh waves . PhD thesis, Karlsruhe Institute of Technology, Germany (available at http://nbn‐resolving.de/urn:nbn:de:swb:90‐373206).
  22. GroosL., SchäferM., ForbrigerT. and BohlenT.2014. The role of attenuation in 2D full‐waveform inversion of shallow‐seismic body and Rayleigh waves. Geophysics79(6), R247–R261.
    [Google Scholar]
  23. HeiderS.2014. 2D elastic full‐waveform tomography of vibro‐seismic data in crystalline host rock at the GFZ‐Underground‐Lab, Freiberg . PhD thesis, Karlsruhe Institute of Technology (KIT), Germany (available at http://nbn‐resolving.org/urn:nbn:de:swb:90‐427481).
  24. HerglotzG.1907. Über das Benndorf'sche Problem der Fortpflanzungsgeschwindigkeit der Erdbebenstrahlen. Physikal. Zeitschr. 8, 145–147.
    [Google Scholar]
  25. HeringA., MisiekR., GyulaiA., OrmosT., DobrokaM. and DresenL.1995. A joint inversion algorithm to process geoelectric and surface wave seismic data. Part I: basic ideas. Geophysical Prospecting43(2), 135–156.
    [Google Scholar]
  26. HornR., RabbelW. and VolkL.2008. Anwendbarkeit geophysikalischer, bodenphysikalischer und landtechnischer Methoden zur Bestimmung von flächenhaften Bodenverdichtungen auf landwirtschaftlich genutzten Flächen, Tech. rep., CAU Kiel, Institut für Pflanzenernährung und Bodenkunde, Institut für Geowissenschaften, Abt.: Geophysik und Fachhochschule Südwestfalen, Hochschule für Technik und Wirtschaft, Fachbereich Agrarwirtschaft Soest.
  27. HunterJ.D.2007. Matplotlib: a 2D graphics environment. Computing In Science & Engineering9(3), 90–95.
    [Google Scholar]
  28. KöhlerR.1935. Dispersion und Resonanzerscheinungen im Baugrund. Zeitschr. techn. Phys. 12, 597–600.
    [Google Scholar]
  29. KöhlerR. and RamspeckA.1935. Die Anwendung dynami‐scher Baugrunduntersuchungen , Veröffentlichungen des Instituts der Deutschen Forschungsgesellschaft für Bodenmechanik (Degebo).
  30. KöhnD., De NilD., KurzmannA., PrzebindowskaA. and BohlenT.2012. On the influence of model parametrization in elastic full waveform tomography. Geophysical Journal International191(1), 325–345.
    [Google Scholar]
  31. KöhnD., KurzmannA., De NilD. and GroosL.2014. DENISE ‐ User manual , available at https://www.geophysik.uni-kiel.de/%7Edkoehn/software.htm.
  32. KöhnD., MeierT., FehrM., De NilD. and AurasM.2016. Application of 2D elastic Rayleigh waveform inversion to ultrasonic laboratory and field data. Near Surface Geophysics14(5), 461–476.
    [Google Scholar]
  33. KomatitschD. and MartinR.2007. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics72(5), 155–167.
    [Google Scholar]
  34. KomatitschD., XieZ., BozdağE., Sales deAndrade E., PeterD., LiuQ. and TrompJ.2016. Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion. Geophysical Journal International206(3), 1467–1478.
    [Google Scholar]
  35. KorschunowA.1955. On surface‐waves in loose materials of the soil. Geophysical Prospecting3, 359–380.
    [Google Scholar]
  36. KuglerS., BohlenT., ForbrigerT., BussatS. and KleinG.2007. Scholte‐wave tomography for shallow‐water marine sediments. Geophysical Journal International168(2), 551–570.
    [Google Scholar]
  37. KurzmannA.2012. Applications of 2D and 3D full waveform tomography in acoustic and viscoacoustic complex media . Ph.D. thesis, Karlsruhe Institute of Technology (KIT), available at https://publikationen.bibliothek.kit.edu/1000034421.
  38. LandauL. and LifschitzE.1986. Theory of Elasticity. Elsevier.
    [Google Scholar]
  39. LevanderA.1988. Fourth‐order finite‐difference P‐SV seismograms. Geophysics53(11), 1425–1436.
    [Google Scholar]
  40. MasoniI., BrossierR., VirieuxJ. and BoelleJ.2013. Alternative misfit functions for FWI applied to surface waves. In: 75th EAGE Conference and Exhibition 2013, pp. Th E106–01. London.
  41. MasoniI., BrossierR., BoelleJ., MacquetM. and VirieuxJ.2014a. Robust full waveform inversion of surface waves. Seismic Technology11, 1–19.
    [Google Scholar]
  42. MasoniI., BrossierR., BoelleJ. and VirieuxJ.2014b. Generic gradient expression for robust FWI of surface waves. In 76th EAGE Conference and Exhibition 2014. pp. Th E106–01. Amsterdam.
  43. MATLAB
    MATLAB. 2011. MATLAB version 7.13.0.564 (R2011b). Natick, Massachusetts: The Mathworks, Inc.
    [Google Scholar]
  44. MaurerH., GreenhalghS., ManukyanE., MarelliS. and GreenA.2012. Receiver‐coupling effects in seismic waveform inversions. Geophysics77(1), R57–R63.
    [Google Scholar]
  45. McMechanG. and YedlinM.1981. Analysis of dispersive waves by wave field transformation. Geophysics46(6), 869–874.
    [Google Scholar]
  46. MétivierL., BrossierR., OpertoS. and VirieuxJ.2015. Acoustic multi‐parameter FWI for the reconstruction of P‐wave velocity, density and attenuation: preconditioned truncated Newton approach. In SEG Technical Program Expanded Abstracts 2015. pp. 1198–1203.
  47. MisiekR.1996. Surface waves: Application to lithostructural interpretation of near‐surface layers in the meter and decameter range . Ph.D. thesis, Ruhr‐Universität Bochum, Germany.
  48. MisiekR., LiebigA., GyulaiA., OrmosT., DobrokaM. and DresenL.1997. A joint inversion algorithm to process geoelectric and surface wave seismic data. Part II: applications. Geophysical Prospecting45(1), 65–85.
    [Google Scholar]
  49. NguyenB. and McMechanG.2015. Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration. Geophysics80(1), S1–S18.
    [Google Scholar]
  50. NguyenT., TranK. and McVayM.2016. Evaluation of unknown foundations using surface‐based full waveform tomography. Journal of Bridge Engineering.
    [Google Scholar]
  51. NocedalJ. and WrightS.2006. Numerical Optimization. New York: Springer.
    [Google Scholar]
  52. OpertoS., GholamiY., PrieuxV., RibodettiA., BrossierR., MétivierL. and VirieuxJ.2013. A guided tour of multiparameter full‐waveform inversion with multicomponent data: From theory to practice. The Leading Edge32(9), 1040–1054.
    [Google Scholar]
  53. OpertoS., MiniussiA., BrossierR., CombeL., MétivierL., MonteillerV., RibodettiA. and VirieuxJ.2015. Efficient 3‐d frequency‐domain mono‐parameter full‐waveform inversion of ocean‐bottom cable data: application to valhall in the visco‐acoustic vertical transverse isotropic approximation. Geophysical Journal International202(2), 1362–1391.
    [Google Scholar]
  54. PanY., XiaJ., XuY., GaoL. and XuZ.2016. Love‐wave waveform inversion in time domain for shallow shear‐wave velocity. Geophysics81(1), R1–R14.
    [Google Scholar]
  55. ParkC., MillerR. and XiaJ.1999. Higher mode observation by the MASW method. In 70th SEG Annual International Meeting.
  56. PérezSolano C. A., DonnoD. and ChaurisH.2014. Alternative waveform inversion for surface wave analysis in 2‐D media. Geophysical Journal International198(3), 1359–1372.
    [Google Scholar]
  57. PlessixR.‐E.2006. A review of the adjoint‐state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International167(2), 495–503.
    [Google Scholar]
  58. PolakE. and RibièreG.1969. Note sur la convergence de mèthodes de directions conjuguèes. Revue Francaise d'Informatique et de Recherche Opèrationnelle16, 35–43.
    [Google Scholar]
  59. RaknesE. and WeibullW.2016. Efficient 3D elastic full‐waveform inversion using wavefield reconstruction methods. Geophysics81(2), R45–R55.
    [Google Scholar]
  60. RavautC., OpertoS., ImprotaL., VirieuxJ., HerreroA. and Dell'AversanaP.2004. Multiscale imaging of complex structures from multifold wide‐aperture seismic data by frequency‐domain full‐waveform tomography: application to a thrust belt. Geophysical Journal International159(3), 1032–1056.
    [Google Scholar]
  61. RobertssonJ. O. A.1996. A numerical free‐surface condition for elastic/viscoelastic finite‐difference modeling in the presence of topography. Geophysics61, 1921–1934.
    [Google Scholar]
  62. SchäferM.2014. Application of full‐waveform inversion to shallow‐seismic Rayleigh waves on 2D structures . Ph.D. thesis, Karlsruhe Institute of Technology, available at https://publikationen.bibliothek.kit.edu/1000041922.
  63. SchäferM., GroosL., ForbrigerT. and BohlenT.2014. Line‐source simulation for shallow‐seismic data. Part 2: full‐waveform inversion – a synthetic 2‐D case study. Geophysical Journal International198(3), 1405–1418.
    [Google Scholar]
  64. SchneiderC. and DresenL.1994. Oberflächenwellendaten zur Lokalisierung von Altlasten: Ein Feldfall. Geophysical Transactions39(4), 233–255.
    [Google Scholar]
  65. SchönJ.1996. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Pergamon.
    [Google Scholar]
  66. ShippR. and SinghS.2002. Two‐dimensional full wavefield inversion of wide‐aperture marine seismic streamer data. Geophys. J. Int.151, 325–344.
    [Google Scholar]
  67. SunW. and FuL.‐Y.2013. Two effective approaches to reduce data storage in reverse time migration. Computers & Geosciences56, 69–75.
    [Google Scholar]
  68. SymesW. W.2007. Reverse time migration with optimal checkpointing. Geophysics72(5), SM213–SM221.
    [Google Scholar]
  69. TarantolaA.2005. Inverse Problem Theory. SIAM.
    [Google Scholar]
  70. TranK., McVayM., FaraoneM. and HorhotaD.2013. Sinkhole detection using 2D full seismic waveform tomography. Geophysics78(5), R175–R183.
    [Google Scholar]
  71. TranK. T. and McVayM.2012. Site characterization using Gauss‐Newton inversion of 2‐D full seismic waveform in the time domain. Soil Dynamics and Earthquake Engineering43(0), 16–24.
    [Google Scholar]
  72. VirieuxJ.1984. SH‐wave propagation in heterogeneous media: Velocity‐stress finite‐difference method. Geophysics49(11), 1933–1957.
    [Google Scholar]
  73. VirieuxJ. and OpertoS.2009. An overview of full‐waveform inversion in exploration geophysics. Geophysics74(6), WCC1–WCC26.
    [Google Scholar]
  74. WiechertE.1910. Bestimmung des Weges von Erdbebenwellen I. Theoretisches, Phys. Z.11, 294–304.
    [Google Scholar]
  75. WiechertE. and GeigerL.1901. Bestimmung des Weges von Erdbebenwellen im Erdinneren. Physikal. Zeitschr.11, 394–411.
    [Google Scholar]
  76. WilkenD. and RabbelW.2012. On the application of particle swarm optimization strategies on scholte‐wave inversion. Geophysical Journal International190(1), 580–594.
    [Google Scholar]
  77. XiaJ., MillerR. and ParkC.1999. Estimation of near‐surface shear‐wave velocity by inversion of Rayleigh waves. Geophysics64(3), 691–700.
    [Google Scholar]
  78. XiaJ., MillerR. and ParkC.2000. Advantages of calculating shear‐wave velocity from surface waves with higher modes. In 71st SEG Annual International Meeting.
  79. YangP., BrossierR., MétivierL. and VirieuxJ.2016a. Wavefield reconstruction in attenuating media: a checkpointing‐assisted reverse‐forward simulation method. Geophysics81(6).
    [Google Scholar]
  80. YangP., BrossierR., MétivierL. and VirieuxJ.2016b. A review on the systematic formulation of 3‐D multiparameter full waveform inversion in viscoelastic medium. Geophysical Journal International207(1), 129–149.
    [Google Scholar]
  81. YangP., BrossierR. and VirieuxJ.2016c. Wavefield reconstruction by interpolating significantly decimated boundaries. Geophysics81(5), T197–T209.
    [Google Scholar]
  82. ZhangZ., HuangL. and LinY.2012. Double‐Difference Elastic‐Waveform Inversion with Weighted Gradients for Monitoring EGS Reservoirs. In Thirty‐Seventh Workshop on Geothermal Reservoir Engineering. Stanford, California: Stanford University.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12549
Loading
/content/journals/10.1111/1365-2478.12549
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: Inversion; Seismics; Full waveform
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error