1887
Volume 66, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

An improved, iteratively re‐weighted factor analysis procedure is presented to interpret engineering geophysical sounding logs in shallow unsaturated sediments. We simultaneously process cone resistance, electric resistivity, and nuclear data acquired by direct‐push tools to give robust estimates of factor variables and water content in unconsolidated heterogeneous formations. The statistical procedure is based on the iterative re‐weighting of the deviations between the measured and calculated data using the most frequent value method famous for its robustness and high statistical efficiency. The iterative approach improves the result of factor analysis for not normally distributed data and extremely noisy measurements. By detecting a strong regression relation between one of the extracted factors and the fractional volume of water, we establish an independent method for water content estimation along the penetration hole. We verify the estimated values of water volume by using a highly over‐determined, quality‐checked interval inversion procedure. The multidimensional extension of the statistical method allows the estimation of water content distribution along both the vertical and the horizontal coordinates. Numerical tests using engineering geophysical sounding data measured in a Hungarian loessy–sandy formation demonstrate the feasibility of the most frequent value‐based factor analysis, which can be efficiently used for a more reliable hydrogeophysical characterisation of the unsaturated zone.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12573
2017-10-23
2020-04-02
Loading full text...

Full text loading...

References

  1. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Transactions of the AIME146, 54–62.
    [Google Scholar]
  2. AsfahaniJ.2014. Statistical factor analysis technique for characterizing basalt through interpreting nuclear and electrical well logging data (case study from southern Syria). Applied Radiation and Isotopes84, 33–39.
    [Google Scholar]
  3. De WitteL.1955. A study of electric log interpretation methods in shaly formations. Petroleum Transactions of the AIME204, 103–110.
    [Google Scholar]
  4. DobrókaM., GyulaiÁ., OrmosT., CsókásJ. and DresenL.1991. Joint inversion of seismic and geoelectric data recorded in an underground coal mine. Geophysical Prospecting39, 643–665.
    [Google Scholar]
  5. DobrókaM. and SzabóN.P.2012. Interval inversion of well‐logging data for automatic determination of formation boundaries by using a float‐encoded genetic algorithm. Journal of Petroleum Science and Engineering86–87, 144–152.
    [Google Scholar]
  6. DobrókaM., SzabóN.P., TóthJ. and VassP.2016. Interval inversion approach for an improved interpretation of well logs. Geophysics81(2), D155–D167.
    [Google Scholar]
  7. DobrókaM. and SzegediH.2014. On the generalization of seismic tomography algorithms. American Journal of Computational Mathematics4, 37–46.
    [Google Scholar]
  8. DrahosD.2005. Inversion of engineering geophysical penetration sounding logs measured along a profile. Acta Geodaetica et Geophysica40, 193–202.
    [Google Scholar]
  9. DrahosD.2008. Determining the objective function for geophysical joint inversion. Geophysical Transactions45, 105–121.
    [Google Scholar]
  10. DrahosD. and GalsaA.2007. Finite element modelling of penetration electric sonde (in Hungarian). Magyar Geofizika48, 22–30.
    [Google Scholar]
  11. DraskovitsP. and FejesI.1994. Geophysical methods in drinkwater protection of near‐surface reservoirs. Journal of Applied Geophysics31, 53–63.
    [Google Scholar]
  12. FejesI. and JósaE.1990. The engineering geophysical sounding method. Principles, instrumentation, and computerised interpretation. In: Geotechnical and Environmental Geophysics, Environmental and Groundwater, Vol. 2 (ed S.H.Ward ), pp. 321–331, SEG.
    [Google Scholar]
  13. GranaG., DvorkinJ. and CibinP.2011. Factor analysis prediction of effective stress from measurable rock attributes and calibration data. First Break29(7), 63–72.
    [Google Scholar]
  14. GyulaiÁ., BaraczaM.K. and SzabóN.P.2014. On the application of combined geoelectric weighted inversion in environmental exploration. Environmental Earth Sciences71, 383–392.
    [Google Scholar]
  15. GyulaiÁ., SzűcsP., TuraiE., BaraczaM.K. and FejesZ.2017. Geoelectric characterization of thermal water aquifers using 2.5D inversion of VES measurements. Surveys in Geophysics38, 503–526.
    [Google Scholar]
  16. JöreskogK.G.2007. Factor analysis and its extensions. In: Factor Analysis at 100, Historical Developments and Future Directions, (eds R.Cudeck and R.C.MacCallum ), pp. 47–77. Lawrence Erlbaum Associates.
    [Google Scholar]
  17. KaiserH.F.1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika23, 187–200.
    [Google Scholar]
  18. KirschR.2006. Groundwater Geophysics: A Tool for Hydrogeology. Springer.
    [Google Scholar]
  19. LawleyD.N. and MaxwellA.E.1962. Factor analysis as a statistical method. The Statistician12, 209–229.
    [Google Scholar]
  20. LunneT., RobertsonP.K. and PowellJ.J.M.1997. Cone‐Penetration Testing in Geotechnical Practice. Taylor & Francis.
    [Google Scholar]
  21. MarquardtD.W.1959. Solution of non‐linear chemical engineering models. Chemical Engineering Progress55, 65–70.
    [Google Scholar]
  22. MenkeW.1984. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press.
    [Google Scholar]
  23. NiculescuB.M., AndreiG. and CiupercaC.2016. Improved formation evaluation through principal component analysis. 78th EAGE conference & exhibition 2016, Vienna, Austria, Expanded Abstracts, Paper Tu STZ2 15.
  24. NyáriZ., KanliA.I., StickelJ. and TillmannA.2010. The use of non‐conventional CPTe data in determination of 3‐D electrical resistivity distribution. Journal of Applied Geophysics70, 255–265.
    [Google Scholar]
  25. PuskarczykE., JarzynaJ. and PorebskiS.2015. Application of multivariate statistical methods for characterizing heterolithic reservoirs based on wireline logs—Example from the Carpathian Foredeep Basin (Middle Miocene, SE Poland). Geological Quarterly59, 157–168.
    [Google Scholar]
  26. SchulmeisterM.K., ButlerJ.J., HealeyJ.M., ZhengL., WysockiD.A. and McCallG.W.2003. Direct‐push electrical conductivity logging for high‐resolution hydrostratigraphic characterization. Ground Water Monitoring & Remediation23, 52–62.
    [Google Scholar]
  27. SerraO.1984. Fundamentals of well‐log interpretation 1. The acquisition of logging data. Developments in Petroleum Science, Vol. 15. Elsevier.
  28. SteinerF.1988. Most frequent value procedures (a short monograph). Geophysical Transactions34(2–3), 139–260.
    [Google Scholar]
  29. SteinerF.1991. The Most Frequent Value: Introduction to a Modern Conception of Statistics. Akadémiai Kiadó.
    [Google Scholar]
  30. SteinerF.1997. Optimum Methods in Statistics. Akadémiai Kiadó.
    [Google Scholar]
  31. SzabóN.P.2011. Shale volume estimation based on the factor analysis of well‐logging data. Acta Geophysica59, 935–953.
    [Google Scholar]
  32. SzabóN.P.2012. Dry density derived by factor analysis of engineering geophysical sounding measurements. Acta Geodaetica et Geophysica47, 161–171.
    [Google Scholar]
  33. SzabóN.P.2015. Hydraulic conductivity explored by factor analysis of borehole geophysical data. Hydrogeology Journal23, 869−882.
    [Google Scholar]
  34. SzabóN.P.2016. Hydrocarbon formation evaluation using an efficient genetic algorithm‐based factor analysis method. 15th European conference on the mathematics of oil recovery, Amsterdam, The Netherlands, Paper Mo P071.
  35. SzabóN.P. and DobrókaM.2017. Robust estimation of reservoir shaliness by iteratively reweighted factor analysis. Geophysics82(2), D69–D83.
    [Google Scholar]
  36. SzabóN.P., DobrókaM. and DrahosD.2012. Factor analysis of engineering geophysical sounding data for water saturation estimation in shallow formations. Geophysics77(3), WA35–WA44.
    [Google Scholar]
  37. SzalaiS., KoppanA., SzokoliK. and SzarkaL.2013. Geoelectric imaging properties of traditional arrays and of the optimized Stummer configuration. Near Surface Geophysics11, 51–62.
    [Google Scholar]
  38. SzalaiS., LempergerI., MetwalyM., KisA., WesztergomV., SzokoliK.et al. 2015. Increasing the effectiveness of electrical resistivity tomography using γ11n configurations. Geophysical Prospecting63, 508–524.
    [Google Scholar]
  39. SzegediH. and DobrókaM.2014. On the use of Steiner's weights in inversion‐based Fourier transformation: robustification of a previously published algorithm. Acta Geodaetica et Geophysica49, 95–104.
    [Google Scholar]
  40. SzűcsP., CivanF. and VirágM.2006. Applicability of the most frequent value method in groundwater modeling. Hydrogeology Journal14, 31–43.
    [Google Scholar]
  41. TillmannA., EnglertA., NyáriZs., FejesI., VanderborghtJ. and VereeckenH.2008. Characterization of subsoil heterogeneity, estimation of grain size distribution and hydraulic conductivity at the Krauthausen test site using Cone Penetration Test. Journal of Contaminant Hydrology95, 57–75.
    [Google Scholar]
  42. TuraiE.2011. Data processing method developments using TAU‐transformation of time‐domain IP data II. Interpretation results of field measured data. Acta Geodaetica et Geophysica46, 391–400.
    [Google Scholar]
  43. TuraiE. and DobrókaM.2011. Data processing method developments using TAU‐transformation of time‐domain IP data I. Theoretical basis. Acta Geodaetica et Geophysica46, 283–290.
    [Google Scholar]
  44. VértesyL., FancsikT., FejesI., GulyásÁ., HegedűsE., KovácsA.Cs. et al. 2004. Ground‐based geophysical surveys at the Bátaapáti (Üveghuta) Site and in its vicinity. In: Annual Report of the Geological Institute of Hungary 2003, 239–256.
    [Google Scholar]
  45. WalshD., TurnerP., GrunewaldE., ZhangH., ButlerJ.J., RebouletE.et al. 2013. A small‐diameter NMR logging tool for groundwater investigations. Groundwater51, 914–926.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12573
Loading
/content/journals/10.1111/1365-2478.12573
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Inversion , Log analysis , Modelling and Noise rejection
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error