1887
Volume 66, Issue 7
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Compensation for geometrical spreading along the ray‐path is important in amplitude variation with offset analysis especially for not strongly attenuative media since it contributes to the seismic amplitude preservation. The P‐wave geometrical spreading factor is described by a non‐hyperbolic moveout approximation using the traveltime parameters that can be estimated from the velocity analysis. We extend the P‐wave relative geometrical spreading approximation from the rational form to the generalized non‐hyperbolic form in a transversely isotropic medium with a vertical symmetry axis. The acoustic approximation is used to reduce the number of parameters. The proposed generalized non‐hyperbolic approximation is developed with parameters defined by two rays: vertical and a reference rays. For numerical examples, we consider two choices for parameter selection by using two specific orientations for reference ray. We observe from the numerical tests that the proposed generalized non‐hyperbolic approximation gives more accurate results in both homogeneous and multi‐layered models than the rational counterpart.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12647
2018-05-24
2020-04-05
Loading full text...

Full text loading...

References

  1. AlkhalifahT.1998. Acoustic approximations for processing in transversely isotropic media. Geophysics63, 623–631.
    [Google Scholar]
  2. AlkhalifahT. and TsvankinI.1995. Velocity analysis for transversely isotropic media. Geophysics60, 1550–1566.
    [Google Scholar]
  3. BortfeldR.1961. Approximations to the reflection and transmission coefficients of plane longitudinal and transverse waves. Geophysical Prospecting9, 485–502.
    [Google Scholar]
  4. ČervenýV.2001. Seismic Ray Theory. Cambridge University Press.
  5. FomelS.2004. On anelliptic approximations for qP velocities in VTI media. Geophysical Prospecting52, 247–259.
    [Google Scholar]
  6. FomelS. and StovasA.2010. Generalized nonhyperbolic moveout approximation. Geophysics75, U9–U18.
    [Google Scholar]
  7. FowlerP.J.2003. Practical VTI approximations: a systematic anatomy. Journal of Applied Geophysics54, 347–367.
    [Google Scholar]
  8. GajewskiD. and PšenčíkI.1990. Vertical seismic profile synthetics by dynamic ray tracing in laterally varying layered anisotropic structures. Journal of Geophysical Research95, 11301–11315.
    [Google Scholar]
  9. GolikovP. and StovasA.2012. Accuracy comparison of nonhyperbolic moveout approximations for qP‐waves in VTI media. Journal of Geophysics and Engineering9, 428–432.
    [Google Scholar]
  10. GolikovP. and StovasA.2013. Moveout‐based geometrical spreading approximation in TTI media. 75th Annual International Conference and Exhibition, EAGE, Extended Abstracts, Tu P0614.
  11. MaultzschS., HorneS., ArcherS. and BurkhardtH.2003. Effects of an anisotropic overburden on azimuthal amplitude analysis in horizontal transverse isotropic media. Geophysical Prospecting51, 61–74.
    [Google Scholar]
  12. RavveI. and KorenZ.2017. Traveltime approximation in vertical transversely isotropic layered media, Geophysical Prospecting65, 1559–1581.
    [Google Scholar]
  13. StovasA.2015. Azimuthally dependent kinematic properties of orthorhombic media. Geophysics80, C107–C122.
    [Google Scholar]
  14. StovasA. and UrsinB.2009. Improved geometric‐spreading approximation in layered transversely isotropic media. Geophysics74, D85–D95.
    [Google Scholar]
  15. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  16. TsvankinI.1995. Body‐wave radiation patterns and AVO in transversely isotropic media. Geophysics60, 1409–25.
    [Google Scholar]
  17. TsvankinI.2012. Seismic signatures and analysis of reflection data in anisotropic media. In Geophysical References Series, Vol. 19. Society of Exploration Geophysicists.
    [Google Scholar]
  18. TsvankinI. and ThomsenL.1994. Nonhyperbolic reflection moveout in anisotropic media. Geophysics59, 1290–1304.
    [Google Scholar]
  19. UrsinB.1990. Offset‐dependent geometrical spreading in a layered medium. Geophysics55, 492–496.
    [Google Scholar]
  20. UrsinB. and HokstadK.2003. Geometrical spreading in a layered transversely isotropic medium with vertical symmetry axis. Geophysics68, 2082–2091.
    [Google Scholar]
  21. WangY.2003. Seismic Amplitude Inversion in Reflection Tomography, Vol. 33. Elsevier.
    [Google Scholar]
  22. XuX. and TsvankinI.2006. Anisotropic geometrical‐spreading correction for wide‐azimuth P‐wave reflection. Geophysics71, D161–D170.
    [Google Scholar]
  23. XuX., TsvankinI. and PechA.2005. Geometrical spreading of P‐waves in horizontally layered, azimuthally anisotropic media. Geophysics70, D43–D53.
    [Google Scholar]
  24. ZhouH., and McMechanG. A.2000. Analytical study of the geometrical spreading of P‐waves in a layered transversely isotropic medium with vertical symmetry axis. Geophysics65, 1305–1315.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12647
Loading
/content/journals/10.1111/1365-2478.12647
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Geometrical spreading approximation , Seismic modelling and VTI medium
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error