1887
Volume 67 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Nowadays, full‐waveform inversion, based on fitting the measured surface data with modelled data, has become the preferred approach to recover detailed physical parameters from the subsurface. However, its application is computationally expensive for large inversion domains. Furthermore, when the subsurface has a complex geological setting, the inversion process requires an appropriate pre‐conditioning scheme to retrieve the medium parameters for the desired target area in a reliable manner. One way of dealing with both aspects is by waveform inversion schemes in a target‐oriented fashion. Therefore, we propose a prospective application of the convolution‐type representation for the acoustic wavefield in the frequency–space domain formulated as a target‐oriented waveform inversion method. Our approach aims at matching the observed and modelled upgoing wavefields at a target depth level in the subsurface, where the seismic wavefields, generated by sources distributed above this level, are available. The forward modelling is performed by combining the convolution‐type representation for the acoustic wavefield with solving the two‐way acoustic wave‐equation in the frequency–space domain for the target area. We evaluate the effectiveness of our inversion method by comparing it with the full‐domain full‐waveform inversion process through some numerical examples using synthetic data from a horizontal well acquisition geometry, where the sources are located at the surface and the receivers are located along a horizontal well at the target level. Our proposed inversion method requires less computational effort and, for this particular acquisition, it has proven to provide more accurate estimates of the target zone below a complex overburden compared to both full‐domain full‐waveform inversion process and local full‐waveform inversion after applying interferometry by multidimensional deconvolution to get local‐impulse responses.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12703
2018-10-22
2020-07-11
Loading full text...

Full text loading...

References

  1. 1AlkhalifahT.2016. Full‐model wavenumber inversion: an emphasis on the appropriate wavenumber continuation. Geophysics81, R89–R98.
    [Google Scholar]
  2. AlkhalifahT. and WuZ.2017. Migration velocity analysis using pre‐stack wave fields. Geophysical Prospecting65, 639–649.
    [Google Scholar]
  3. AlkhalifahT.A.2014. Full Waveform Inversion in an Anisotropic World: Where Are the Parameters Hiding? EAGE, Houten.
    [Google Scholar]
  4. AmundsenL. and ReitanA.1995. Decomposition of multicomponent sea‐floor data into upgoing and downgoing P‐ and S‐waves. Geophysics60, 563–572.
    [Google Scholar]
  5. BakulinA. and CalvertR.2004. Virtual source: new method for imaging and 4D below complex overburden. 74th SEG meeting, Denver, Expanded Abstracts, 2477–2480.
  6. BakulinA. and CalvertR.2006. The virtual source method: theory and case study. Geophysics71, SI139–SI150.
    [Google Scholar]
  7. BaysalE., KosloffD. and SherwoodW.C.1983. Reverse time migration. Geophysics48, 1514–1524.
    [Google Scholar]
  8. BérengerJ.1994. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics114, 185–200.
    [Google Scholar]
  9. BerkhoutA.J.1982. Seismic Migration, Imaging of Acoustic Energy by Wave Field Extrapolation, A. Theoretical Aspects. Elsevier.
    [Google Scholar]
  10. BerkhoutA.J.2012. Combining full wavefield migration and full waveform inversion, a glance into the future of seismic imaging. Geophysics, 77, S43–S50.
    [Google Scholar]
  11. BerkhoutA.J.2014. Review paper: an outlook on the future seismic imaging, part III: joint migration inversion. Geophysical Prospecting62, 950–971.
    [Google Scholar]
  12. Bertete‐AguirreH., CherkaevE. and OristaglioM.2002. Non‐smooth gravity problem with total variation penalization functional. Geophysical Journal International149, 499–507.
    [Google Scholar]
  13. BiondiB. and SavaP.1999. Wave‐equation migration velocity analysis. 69th SEG meeting, Houston, Expanded Abstracts, 1723–1726.
  14. BunksC., SaleckF.M., ZaleskiS. and ChaventG.1995. Multiscale seismic waveform inversion. Geophysics60, 1457–1473.
    [Google Scholar]
  15. da CostaC.A.N., SoniA.K. and VerschuurD.J.2015. Using multiples to improve the reservoir response via sparse inversion. 85th SEG meeting, New Orleans, Expanded Abstracts, 2978–2983.
  16. DaiW., FowlerP. and SchusterG.T.2012. Multi‐source least‐squares reverse time migration. Geophysical Prospecting60, 681–695.
    [Google Scholar]
  17. El MarhfoulB. and VerschuurD.J.2017. Joint migration inversion of 3D full wavefield borehole data. 79th EAGE meeting, Paris, France, Expanded Abstracts, We P9 06.
  18. FengZ. and SchusterG.T.2017. Elastic least‐squares reverse time migration. Geophysics82, S143–S157.
    [Google Scholar]
  19. FokkemaJ.T. and van den BergP.M.1993. Seismic Applications of Acoustic Reciprocity. Elsevier Science.
    [Google Scholar]
  20. GargA. and VerschuurD.J.2016. Reservoir impulse response estimation using joint migration inversion. 78th EAGE meeting, Vienna, Austria, Expanded Abstracts, P004.
  21. GargA. and VerschuurD.J.2017. High‐resolution reservoir impulse response estimation. 87th SEG meeting, Houston, Expanded Abstracts, 3516–3520.
  22. GolubG.H. and van LoanC.F.1996. Matrix Computations. The Johns Hopkins University Press.
    [Google Scholar]
  23. HaffingerP., GisolfA. and van den BergP.M.2013. Towards high resolution quantitative subsurface models by full waveform inversion. Geophysical Journal International193, 788–797.
    [Google Scholar]
  24. LaillyP.1983. The seismic inversion problem as a sequence of before stack migrations. Conference on Inverse Scattering, Theory and Application. Society for Industrial and Applied Mathematics, Expanded Abstracts, 206–220.
  25. LiuD.C. and NocedalJ.1989. On the limited memory BFGS method for large scale optimization. Mathematical Programming45, 503–528.
    [Google Scholar]
  26. MarfurtK.J.1984. Accuracy of finite‐difference and finite‐element modeling of the scalar and elastic wave equations. Geophysics49, 533–549.
    [Google Scholar]
  27. MehtaK., KiYashchenkoD., JorgensenP., LopezJ., FerrandisJ. and CostelloM.2010. Virtual source method applied to crosswell and horizontal well geometries. The Leading Edge72, 712–723.
    [Google Scholar]
  28. MinatoS., MatsuokaT., TsujiT., DraganovD., HunzikerJ. and WapenaarK.2011. Seismic interferometry using multidimensional deconvolution and crosscorrelation for crosswell seismic reflection data without borehole sources. Geophysics76, SA19–SA34.
    [Google Scholar]
  29. NocedalJ.1980. Updating quasi‐newton matrices with limited storage. Mathematics of Computation35, 773–782.
    [Google Scholar]
  30. NocedalJ. and WrightS.J.2006. Numerical Optimization. Springer.
    [Google Scholar]
  31. PlessixR.E.2006. A review of the adjoint‐state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International167, 495–503.
    [Google Scholar]
  32. Pratt, R.G., 1990. Inverse theory applied to multi‐source cross‐hole tomography. Part 2: elastic wave‐equation method. Geophysical Prospecting38, 311–329.
    [Google Scholar]
  33. Pratt, R.G., ShinC. and HicksG.J.1998. Gauss‐Newton and full Newton methods in frequency‐space seismic waveform inversion. Geophysical Journal International133, 341–362.
    [Google Scholar]
  34. SavaP. and BiondiB.2004a. Wave‐equation migration velocity analysis. I: theory. Geophysical Prospecting52, 593–606.
    [Google Scholar]
  35. SavaP. and BiondiB.2004b. Wave‐equation migration velocity analysis. II: subsalt imaging examples. Geophysical Prospecting52, 607–623.
    [Google Scholar]
  36. SchalkwijkK.M., WapenaarC.P.A. and VerschuurD.J.2003. Adaptive decomposition of multicomponent ocean‐bottom seismic data into downgoing and upgoing P‐ and S‐waves. Geophysics68, 1091–1102.
    [Google Scholar]
  37. SirgueL.2003. Inversion de la forme d'onde dans le domaine fréquentiel de données sismiques grand offset. PhD thesis, Université Paris and Queen's University.
    [Google Scholar]
  38. TangY.2009. Target‐oriented wave‐equation least‐squares migration/inversion with phase‐encoded hessian. Geophysics74, WCA95–WCA107.
    [Google Scholar]
  39. TarantolaA.1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics49, 1259–1266.
    [Google Scholar]
  40. TarantolaA.1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier Science.
    [Google Scholar]
  41. ThorbeckeJ. and DraganovD.2011. Finite‐difference modeling experiments for seismic interferometry. Geophysics76, H1–H18.
    [Google Scholar]
  42. Tikhonov, A.N. and ArseninV.Y.1977. Solutions of ill‐posed problems . John Wiley & Sons.
    [Google Scholar]
  43. ValencianoA.A., BiondiB. and GuittonA.2006. Target‐oriented wave‐equation inversion. Geophysics71, A35–A38.
    [Google Scholar]
  44. van BorselenR.G., FokkemaJ. and van den BergP.2013. Wavefield decomposition based on acoustic reciprocity: theory and applications to marine acquisition. Geophysics72, WA41–WA54.
    [Google Scholar]
  45. van der NeutJ. and HerrmannF.J.2013. Interferometric redatuming by sparse inversion. Geophysical Journal International192, 666–670.
    [Google Scholar]
  46. VasconcelosI., RavasiM. and van der NeutJ.2017. Subsurface‐domain, interferometric objective functions for target‐oriented waveform inversion. Geophysics82, A37–A41.
    [Google Scholar]
  47. VirieuxJ. and OpertoS.2009. An overview of full‐waveform inversion in exploration geophysics. Geophysics74, WCC1–WCC26.
    [Google Scholar]
  48. WangY.2017. Seismic Inversion: Theory and Applications. John Wiley & Sons.
    [Google Scholar]
  49. WapenaarK., CoxH.L.H. and BerkhoutA.J.1992. Elastic redatuming of multicomponent seismic data. Geophysical Prospecting40, 465–482.
    [Google Scholar]
  50. WapenaarK. and FokkemaJ.2006. Green's function representations for seismic interferometry. Geophysics71, SI33–SI46.
    [Google Scholar]
  51. WapenaarK., ThorbeckeJ., van der NeutJ., BrogginiF., SlobE. and SniederR.2014. Marchenko imaging. Geophysics79, WA39–WA57.
    [Google Scholar]
  52. WapenaarK. and van der NeutJ.2010. A representation for green function retrieval by multidimensional deconvolution. Journal Acoustical Society of America128, EL366–EL371.
    [Google Scholar]
  53. WapenaarK., van der NeutJ., RuigrokE., DraganovD., HunzikerJ., SlobE., et al. 2011. Seismic interferometry by crosscorrelation and by multidimensional deconvolution: a systematic comparison. Geophysical Journal International185, 1335–1364.
    [Google Scholar]
  54. WillemsenB., LewisW. and MalcolmA.2015. Toward target‐oriented fwi: an exact local wave solver applied to salt boundary inversion. 85th SEG meeting, New Orleans, Expanded Abstracts, 1171–1176.
  55. WillemsenB., MalcolmA. and LewisW.2016. A numerically exact local solver applied to salt boundary inversion in seismic full‐waveform inversion. Geophysical Journal International204, 1703–1720.
    [Google Scholar]
  56. XuK., ZhouB. and McMechanG.A.2010. Implementation of prestack reverse time migration using frequency‐domain extrapolation. Geophysics75S61–S72.
    [Google Scholar]
  57. YangD., ZhengY., FehlerM. and MalcolmA.2012. Target‐oriented time‐lapse waveform inversion using virtual survey. 82nd SEG meeting, Las Vegas, Expanded Abstracts, 1–5.
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12703
Loading
/content/journals/10.1111/1365-2478.12703
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Full waveform , Inverse problem , Reservoir geophysics and Seismics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error