1887
Volume 67 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Rapid developments in SQUID‐based technology make it possible for geophysical exploration to direct measure, inverse and interpret magnetic gradient tensor data. This contribution introduces a novel three‐dimensional hybrid regularization method for inversion of magnetic gradient tensor data, which is based on the minimum support functional and total variation functional. Compared to the existing stabilizers, for example, the minimum support stabilizer, the minimum gradient support stabilizer or the total variation stabilizer, our proposed hybrid stabilizer, in association with boundary penalization, improves the revision result greatly, including higher spatial and depth resolution, more clear boundaries, more highlighted images and more evident structure depiction. Moreover, suitable selection of model parameter λ will further improve the image quality of the recovered model. We verify our proposed hybrid method with various synthetic magnetic models. Experiment results prove that this method gives more accurate results, exhibiting advantages of less computational costs even when less prior information of magnetic sources are provided. Comparison of results with different types of magnetic data with and without remanence indicates that our inversion algorithm can obtain more detailed information on the source structure based on rational estimation of total magnetization direction. Finally, we present a case study for inverting SQUID‐based magnetic tensor data acquired at Da Hinggan Mountains area, inner Mongolia, China. The result also certifies that the method is reliable and efficient for real cases.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12721
2018-12-26
2020-05-26
Loading full text...

Full text loading...

References

  1. AdlerR., OverduinJ., SilbergleitA. and WagonerR.2004. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. An Educator's Guide with Activities in Space Science. NASA, p. 26.
    [Google Scholar]
  2. AkiyamaS. and SunS.2001. A special issue devoted to the geology and mineralization of the Southern Da Hinggan Mountains Area, Inner Mongolia, China. Resource Geology51, 273–274.
    [Google Scholar]
  3. BarbosaV.C.F. and SilvaJ.B.C.1994. Generalized compact gravity inversion. Geophysics59, 57–68.
    [Google Scholar]
  4. BeikiM.2010. Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics75, 159–174.
    [Google Scholar]
  5. BeikiM.2013. TSVD analysis of Euler deconvolution to improve estimating magnetic source parameters: An example from the Asele area, Sweden. Journal of Applied Geophysics90, 82–91.
    [Google Scholar]
  6. BeikiM., PedersenL.B. and NaziH.2011. Interpretation of aeromagnetic data using eigenvector analysis of pseudogravity gradient tensor. Geophysics76(3), L1–L10.
    [Google Scholar]
  7. BeikiM., ClarkD.A., AustinJ.R. and FossC.A.2012. Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data. Geophysics77(6), J23–J37.
    [Google Scholar]
  8. BlakelyR.J.1996. Potential Theory in Gravity and Magnetic Applications: Stanford‐Cambridge Program, 24–27.
    [Google Scholar]
  9. CaratoriTontini F. and PedersenL.B.2008. Interpreting magnetic data by integral moments. Geophysical Journal International174, 815–824.
    [Google Scholar]
  10. CellaF. and FediM.2012. Inversion of potential field data using the structural index as weighting function rate decay. Geophysical Prospecting60, 313–336.
    [Google Scholar]
  11. ChangK., ZhangY., WangY., ZengJ., XuX., QiuY., et al. 2014. A simple SQUID system with one operational amplifier as readout electronics. Superconductor Science & Technology27, 1–5.
    [Google Scholar]
  12. ChenZ.X., MengX.H., GuoL.H. and LiuG.F.2012. Three‐dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU. Chinese Journal Geophysics55, 4069–4077.
    [Google Scholar]
  13. ChwalaA., StolzR., ZakosarenkoV., FritzschL., SchulzM., RompelA., et al. 2012. Full tensor SQUID gradiometer for airborne exploration. ASEG Extended Abstracts1, 1–4.
    [Google Scholar]
  14. ClarkD.A.2012. New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength. Exploration Geophysics43, 267–282.
    [Google Scholar]
  15. ClarkD.A., CowardD. and HuddlestonM.P.1998. Remote determination of magnetic properties and improved drill targeting of magnetic anomaly sources by differential vector magnetometry (DVM). Exploration Geophysics29, 312–319.
    [Google Scholar]
  16. CumaM. and ZhdanovM.S.2014. Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs. Computers and Geosciences62, 80–87.
    [Google Scholar]
  17. CumaM., WilsonG.A. and ZhdanovM.S.2012. Large‐scale 3D inversion of potential field data. Geophysical Prospecting60, 1186–1199.
    [Google Scholar]
  18. FediM. and FlorioG.2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical Prospecting49, 40–58.
    [Google Scholar]
  19. FediM., FlorioG. and QuartaT.A.2009. Multiridge analysis of potential fields: Geometric method and reduced Euler deconvolution. Geophysics74(4), L53–L65.
    [Google Scholar]
  20. FlorioG., FediM. and RapollaA.2009. Interpretation of regional aeromagnetic data by the scaling function method: the case of Southern Apennines (Italy). Geophysical Prospecting57, 479–489.
    [Google Scholar]
  21. FlorioG. and FediM.2014. Multiridg Euler deconvolution. Geophysical Prospecting62, 333–351.
    [Google Scholar]
  22. FournierD., DavisK. and OldenburgD.W.2016. Robust and flexible mixed‐norm inversion. 2016 SEG Technical Program, Expanded Abstracts, 16–21.
    [Google Scholar]
  23. GerovskaD., Arazo‐BravoM.J., StavrevP. and WhalerK.2010. MaGSoundDST – 3D automatic inversion of magnetic and gravity data based on the differential similarity transform. Geophysics75(1), L25–L38.
    [Google Scholar]
  24. HansenR.O. and SuciuL.2002. Multiple‐source Euler deconvolution. Geophysics67, 525–535.
    [Google Scholar]
  25. HolsteinH., SherrattE.M. and ReidA.B.2007. Gravimagnetic field tensor gradiometry formulas for uniformpolyhedra. SEG Technical Program, Expanded Abstracts, 750–754.
    [Google Scholar]
  26. HolsteinH., FitzgeraldD., WillisC. and FossC.2011. Magnetic gradient tensor eigen‐analysis for dyke location. 73rd EAGE Conference & Exhibition incorporating SPE EUROPEC, pp. 1–4.
  27. HolsteinH., FitzgeraldD.J. and StefanovH.2013. Gravimagnetic similarity for homogeneous rectangular prisms. 75th EAGE Conference & Exhibition incorporating SPE EUROPEC, pp. 1–6.
  28. HouZ.T.1960. On the magnetic property of volcanic rocks occurring in the Great Shingan mountain region, northeast China. Chinese Journal of Geophysics9, 144–148 (in Chinese).
    [Google Scholar]
  29. IalongoS., MaurizioFedi M. and FlorioG.2014. Invariant models in the inversion of gravity and magnetic fields and their derivatives. Journal of Applied Geophysics110, 51–62.
    [Google Scholar]
  30. KnodelK.2007. Environmental Geology: Magnetic Methods. Springer, pp. 161–184.
    [Google Scholar]
  31. LastB.J. and KubikK.1983. Compact gravity inversion. Geophysics48, 713–721.
    [Google Scholar]
  32. LiY.G. and OldenburgD.W.1996. 3D inversion of magnetic data. Geophysics61, 394–408.
    [Google Scholar]
  33. LiY.G. and OldenburgD.W.2003. Fast inversion of large‐scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophysical Journal International152, 251–265.
    [Google Scholar]
  34. LiY.G., ShearerS.E., HaneyM.M. and DannemillerN.2010. Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization. Geophysics75, L1–L11.
    [Google Scholar]
  35. MunschyM. and FleuryS.2011. Scalar, vector, tensor magnetic anomalies: measurement or computation? Geophysical Prospecting59, 1035–1045.
    [Google Scholar]
  36. NabighianM.N. and HansenR.O.2001. Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform. Geophysics66, 1805–1810.
    [Google Scholar]
  37. NamakiL., GholamiA. and HafiziM.A.2011. Edge‐preserved 2‐D inversion of magnetic data: an application to the Makran arc‐trench complex. Geophysical Journal International184, 1058–1068.
    [Google Scholar]
  38. PaolettiV., IalongoS., FlorioG., FediM. and CellaF.2013. Self‐constrained inversion of potential fields. Geophysical Journal International195, 854–869.
    [Google Scholar]
  39. PedersenL.B. and RasmussenT.M.1990. The gradient tensor of potential‐field anomalies–some implications on data–collection and data‐processing of maps. Geophysics55, 1558–1566.
    [Google Scholar]
  40. PhillipsJ.D.2005. Can we estimate total magnetization directions from aeromagnetic data using Helbig's integrals? Earth Planets & Space57, 681–689.
    [Google Scholar]
  41. PhillipsJ.D., NabighianM.N., SmithD.V. and LiY.2007. Estimating locations and total magnetization vectors of compact magnetic sources from scalar, vector, or tensor magnetic measurements through combined Helbig and Euler analysis. SEG Technical Program, Expanded Abstracts, 770–774.
    [Google Scholar]
  42. PilkingtonM.1997. 3D magnetic imaging using conjugate gradients. Geophysics62, 1132–1142.
    [Google Scholar]
  43. PilkingtonM.2009. 3D magnetic data‐space inversion with sparseness constraints. Geophysics74, L7–L15.
    [Google Scholar]
  44. PilkingtonM. and BeikiM.2013. Mitigating remanent magnetization effects in magnetic data using the normalized source strength. Geophysics78, J25–J32.
    [Google Scholar]
  45. PortniaguineO. and ZhdanovM.S.1999. Focusing geophysical inversion images. Geophysics64, 874–887.
    [Google Scholar]
  46. PortniaguineO. and ZhdanovM.S.2002. 3D magnetic inversion with data compression and image focusing. Geophysics67, 1532–1541.
    [Google Scholar]
  47. QiuY., LiuC., ZhangS.L., ZhangG.F., WangY. L., LiH., et al. 2014. A SQUID gradiometer module with large junction shunt resistors. Chinese Physics B23, 622–624.
    [Google Scholar]
  48. ReidA.B., AllsopJ.M., GranserH., MillettgA.J. and SomertonI.W.1990. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics55, 80–91.
    [Google Scholar]
  49. SalemA. and RavatD.2003. A combined analytic signal and Euler method (AN‐EUL) for automatic interpretation of magnetic data. Geophysics68, 1952–1961.
    [Google Scholar]
  50. SalemA., WilliamsS., FairheadD., SmithR. and RavatD.2008. Interpretation of magnetic data using tilt‐angle derivatives. Geophysics73, L1–L10.
    [Google Scholar]
  51. SchmidtP., ClarkD., LeslieK., BickM., TilbrookD. and FoleyC.2004. GETMAG – a SQUID magnetic tensor gradiometer for mineral and oil exploration. Exploration Geophysics35, 297–305.
    [Google Scholar]
  52. SchmidtP.W. and ClarkD.A.2006. The magnetic gradient tensor: Its properties and uses in source characterization. The Leading Edge25, 75–78.
    [Google Scholar]
  53. Schneider, M, StolzR., LinzenS., SchifflerM., ChwalaA., SchulzM., DunkelS. and MeyerH.G.2013. Inversion of geo‐magnetic full‐tensor gradiometer data. Journal of Applied Geophysics92, 57–67.
    [Google Scholar]
  54. StavrevP.Y.1997. Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies. Geophysical Prospecting45, 207–246.
    [Google Scholar]
  55. StoccoS., GodioA. and SambuelliL.2009. Modelling and compact inversion of magnetic data: A matlab code:. Computers and Geosciences35, 2111–2118.
    [Google Scholar]
  56. StolzR., ZakosarenkoV., SchulzM., ChwalaA., FrtitzschL., MeyerH.G. and KostlinE.O.2006. Magnetic full‐tensor SQUID gradiometer system for geophysical applications. The Leading Edge25, 178–180.
    [Google Scholar]
  57. ThompsonD.T.1982. Euldph—a new technique for making computer‐assisted depth estimates from magnetic data. Geophysics47, 31–37.
    [Google Scholar]
  58. VogelC.R.2002. Computational Methods for Inverse Problems. SIAM, 129–149.
    [Google Scholar]
  59. WilsonH.1985. Analysis of the magnetic gradient tensor. Defence Research Establishment Pacific: Canada Technical Memorandum47, 85–13.
    [Google Scholar]
  60. WynnW.M., FrahmC.P., CarrollP.J., ClarkR.H., WellhonerJ. and WynnM.J.1975. Advanced superconducting gradiometer/magnetometer arrays and a novel signal processing technique. IEEE Transactions on Magnetics11, 701–707.
    [Google Scholar]
  61. ZhdanovM.S.2002. Geophysical Inverse Theory and Regularization Problems. Elsevier Science, 45–81.
    [Google Scholar]
  62. ZhdanovM.S., EllisR. and MukherjeeS.2004. Three‐dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics69, 925–937.
    [Google Scholar]
  63. ZhdanovM.S.2015. Geophysical Inverse Theory and Regularization Problems, 2nd edition. Elsevier Science, pp. 49–90.
    [Google Scholar]
  64. ZhdanovM.S., CaiH.Z. and WilsonG.A.2012. 3D inversion of squid magnetic tensor data. Geology and Geosciences1, 1–5.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12721
Loading
/content/journals/10.1111/1365-2478.12721
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error