1887
Volume 67, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Over the last years, full‐waveform inversion has become an important tool in the list of processing and imaging technologies available to the industry. For marine towed‐streamer data, full‐waveform inversion is typically applied using an acoustic approximation because S‐waves do not propagate in water and elastic effects in recorded data are generally assumed to be small. We compare acoustic and elastic modelling and full‐waveform inversion for a field data set acquired offshore Angola over sediments containing a salt body with significant topology. Forward modelling tests reveal that such geological structures lead to significant mode conversions at interfaces and, consequently, to significant relative amplitude differences when elastically and acoustically modelled traces are compared. Using an acoustic approach for modelling in full‐waveform inversion therefore leads to problems matching the synthetic data with the field data, even for recorded pressure data and with trace normalization applied. Full‐waveform inversion is unable to find consistent model updates. Applying elastic full‐waveform inversion leads to more consistent and reliable model updates with less artefacts, at the expense of additional computation cost. Although two‐dimensional marine towed‐streamer data are least favourable for the application of full‐waveform inversion compared to three‐dimensional data or ocean‐bottom data, it is recommended to check on the existence of elastic effects before deciding on the final processing and imaging approach.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12728
2018-12-30
2024-04-20
Loading full text...

Full text loading...

References

  1. AllemandT. and LambaréG.2015. Combining full waveform inversion and tomography: full waveform inversion‐guided tomography. 77th EAGE Conference & Exhibition, Madrid, Spain, Extended Abstracts.
  2. AmundsenL.1993. Wavenumber‐based filtering of marine point‐source data. Geophysics58, 1335–1348.
    [Google Scholar]
  3. BohlenT.2002. Parallel 3‐D viscoelastic finite difference seismic modelling. Computers & Geosciences28, 887–899.
    [Google Scholar]
  4. BourbiéT., CoussyO. and ZinsznerB.1987. Acoustics of Porous Media , Technip edn. Paris: Institut Français du Pétrole Publications.
  5. BrossierR., OpertoS. and VirieuxJ.2009. Seismic imaging of complex onshore structures by 2D elastic frequency‐domain full‐waveform inversion. Geophysics74, WCC105–WCC118.
    [Google Scholar]
  6. BunksC., SaleckF.M., ZaleskiS. and ChaventG.1995. Multiscale seismic waveform inversion. Geophysics60, 1457–1473.
    [Google Scholar]
  7. ChoiY. and AlkhalifahT.2012. Application of multi‐source waveform inversion to marine streamer data using the global correlation norm. Geophysical Prospecting60, 748–758.
    [Google Scholar]
  8. ForbrigerT., GroosL. and SchäferM.2014. Line‐source simulation for shallow‐seismic data. Part 1: theoretical background. Geophysical Journal International198, 1387–1404.
    [Google Scholar]
  9. GardnerG.H.F., GardnerL.W. and GregoryA.R.1974. Formation basics for velocity and density ‐ the traps diagnostic stratigraphic. Geophysics39, 770–780.
    [Google Scholar]
  10. GroosL.2013. 2D full waveform inversion of shallow seismic Rayleigh waves . PhD thesis, Karlsruhe, Karlsruher Institut für Technologie (KIT), Karlsruhe.
  11. JeongW., LeeH.‐Y. and MinD.‐J.2012. Full waveform inversion strategy for density in the frequency domain. Geophysical Journal International188, 1221–1242.
    [Google Scholar]
  12. KlüverT.2008. Wavefield separation for dual‐sensor data with local handling of aliased energy. SEG Technical Program, Las Vegas, Nevada, Expanded Abstracts.
  13. KöhnD.2011. Time domain 2D elastic full waveform tomography . PhD thesis, Christian‐Albrechts‐Universität zu Kiel, Kiel.
  14. KöhnD., De NilD., KurzmannA., PrzebindowskaA. and BohlenT.2012. On the influence of model parametrization in elastic full waveform tomography. Geophysical Journal International191, 325–345.
    [Google Scholar]
  15. KomatitschD. and MartinR.2007. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics72, SM155–SM167.
    [Google Scholar]
  16. LevanderA.R.1988. Fourth‐order finite‐difference P‐SV seismograms. Geophysics53, 1425–1436.
    [Google Scholar]
  17. LuR., LazaratosS., WangK., ChaY., ChikichevI. and ProsserR.2013. High‐resolution elastic FWI for reservoir characterization. 75th EAGE Conference & Exhibition, London, Extended Abstracts.
  18. MartinR. and KomatitschD.2009. An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation. Geophysical Journal International179, 333–344.
    [Google Scholar]
  19. MoraP.1987. Nonlinear two‐dimensional elastic inversion of multioffset seismic data. Geophysics52, 1211–1228.
    [Google Scholar]
  20. NocedalJ. and WrightS.1999. Numerical optimization. Springer Science35, 67–68.
    [Google Scholar]
  21. PlessixR.‐E.2006. A review of the adjoint‐state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International167, 495–503.
    [Google Scholar]
  22. PlessixR.‐E., MilcikP., RynjaH., StopinA., MatsonK. and AbriS.2013. Multiparameter full‐waveform inversion: marine and land examples. The Leading Edge32, 1030–1038.
    [Google Scholar]
  23. PrattR.G.1999. Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model. Geophysics64, 888–901.
    [Google Scholar]
  24. PrzebindowskaA.2013. Acoustic full waveform inversion of marine reflection seismic data . PhD thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe.
  25. RobertssonJ.O., LevanderA., SymesW.W. and HolligerK.1995. A comparative study of free‐surface boundary conditions for finite‐difference simulation of elastic/viscoelastic wave propagation. SEG Technical Program, Houston, USA, Expanded Abstracts, 1277–1280.
  26. ShippR.M. and SinghS.C. 2002. Two‐dimensional full wavefield inversion of wide‐aperture marine seismic streamer data. Geophysical Journal International151, 325–344.
    [Google Scholar]
  27. TarantolaA.1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics49, 1259–1266.
    [Google Scholar]
  28. ThielN.2018. Acoustic and elastic FWI of marine dual‐sensor streamer data in the presence of salt . PhD thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe.
  29. TrompJ., TapeC. and LiuQ.2005. Seismic tomography, adjoint methods, time reversal and banana‐doughnut kernels. Geophysical Journal International160, 195–216.
    [Google Scholar]
  30. VighD., JiaoK., WattsD. and SunD.2014. Elastic full‐waveform inversion application using multicomponent measurements of seismic data collection. Geophysics79, R63–R77.
    [Google Scholar]
  31. VirieuxJ.1986. P‐SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method. Geophysics51, 889–901.
    [Google Scholar]
  32. WarnerM., RatcliffeA., NangooT., MorganJ., UmplebyA., ShahN., et al. 2013. Anisotropic 3D full‐waveform inversion. Geophysics78, R59–R80.
    [Google Scholar]
  33. XiaoB., KotovaN., BrethertonS., RatcliffeA., DuvalG., PageC., et al. 2016. An offshore Gabon full‐waveform inversion case study. Interpretation4, SU25–SU39.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12728
Loading
/content/journals/10.1111/1365-2478.12728
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Acoustics; Elastics; Full waveform; Inversion; Seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error