1887
Volume 67, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The Zafra de Záncara anticline (also known as the El Hito anticline), located in the Loranca Cenozoic Basin (part of the Tagus Basin, Central Spain), had been studied by several oil companies during the late 1960s and early 1970s. In 2009, within the ‘Plan for selection and characterization of suitable structures of CO geological storage’, this anticline was selected as a potential CO storage site. A preliminary three‐dimensional geological model, based on five geological cross sections that were constrained with the interpretation of the available seismic profiles (that are rather old and do not have very good quality), was created. With the aim of improving the geological knowledge of the Zafra de Záncara anticline and helping to investigate the suitability of a nearby anticline, namely La Rambla, as another structural closure that might make it a possible CO storage site, a local gravity survey (1 station every km2) was carried out in the area, seven new geological cross sections, based on these existing seismic profiles and field geology, were build, and a new three‐dimensional geological model that included both anticlines, improved through three‐dimensional stochastic gravity inversion, was constructed. The densities needed for the geological formations of the model come from the analysis of rock samples, logging data from El Hito‐1 drillhole and petrophysical information from Instituto Geológico y Minero de España database. The inversion has improved the knowledge about the geometry of the anticlines’ traps and seals as well as the geometry of the basement relief and the structural relationship between basement and cover.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12745
2019-02-22
2020-04-05
Loading full text...

Full text loading...

References

  1. ÁlvaroM., CapoteR. and VegasR.1979. Un modelo de evolución geotectónica para la Cadena Celtibérica. Acta Geológica Hispánica14, 172–177.
    [Google Scholar]
  2. BieteC.2010. La estructura alpina del basamento hercínico en la zona del Hito (sector meridional de la Cuenca de Loranca) y su influencia en la deformación contractiva de los materiales suprayacentes: Caracterización tridimensional de la estructura . Tesis de Máster, Universidad de Barcelona, Barcelona, Spain, 17 pp.
  3. BieteC., RocaE. and Hernaiz‐HuertaP.P.2012. The Alpine structure of the basement beneath the southern Loranca Basin and its influence in the thinskinned contractional deformation of the overlying Mesozoic and Cenozoic cover. Geo‐Temas, 13, 173.
    [Google Scholar]
  4. Díaz‐MolinaM., ArribasJ., GómezJ.J and TortosaA.1995. Geological modelling of a reservoir analogue: Cenozoic meander belts, Loranca Basin, Spain. Petroleum Geoscience1, 43–48.
    [Google Scholar]
  5. GibsonH., SumptonJ., FitzgeraldD. and SeikelR.2013. 3D modelling of geology and gravity data: summary workflows for minerals exploration. East Asia: Geology, Exploration Technologies and Mines, Bali, 2013.
  6. GómezJ.J., Díaz MolinaM. and LendínezA.1996. Tectonosedimentary analysis of the Loranca Basin (Upper Oligocene‐Miocene, central Spain): a ‘non sequenced’ foreland basin. In: Tertiary basins of Spain (eds. P.F.Friend and C.J.Dabrio ), pp. 285–294. Cambridge University Press, Cambridge.
    [Google Scholar]
  7. GuimeràJ. and ÁlvaroM.1990. Structure et evolution de la compression alpine dans la Chaîne Iberique et Chaîne Cotiere Catalane. Bulletin de la Société géologique de France8 (VI), 339–348.
    [Google Scholar]
  8. GuillenA., CourriouxG., CalcagnoP., LaneR., LeesT. and McInereyP.2004. Constrained gravity 3D litho‐inversion applied to Broken Hill. SEG 17th Geophysical Conference and Exhibition, Sydney.
  9. GuillenA., CalcagnoPh., CourriouxG., JolyA., LedruP.2008. Geological modelling from field data and geological knowledge, Part II ‐ Modelling validation using gravity and mag‐netic data inversion. Physics of the Earth and Planetary Interiors171, 158–169.
    [Google Scholar]
  10. HammerS.1939. Terrain corrections for gravimeter stations. Geophysics4, 184–194.
    [Google Scholar]
  11. IGME
    IGME . 2009. Plan de selección y caracterización de áreas y estructuras favorables para el almacenamiento geológico de CO2 en España. SID IGME database docs n° 64.044 to 64.055.
  12. Instituto Español de Normalización (IRANOR)
    Instituto Español de Normalización (IRANOR) . 1985. UNE Norm 22‐611‐85. 6 pp.
  13. ITGE
    ITGE , 1990. Documentos sobre la Geología del Subsuelo de España. Tomo III (Madrid ‐ Depresión Intermedia). ITGE, Madrid.
  14. LanajaJ.M. y NavarroA.1987. Contribución de la exploración petrolífera al conocimiento de la Geología de España, 465 pp. Instituto Geológico y Minero de España, Madrid.
  15. McInerneyP., GuillenA., CourriouxG., CalcagnoP. and LeesT. Building 3D geological models directly from the data? A new approach applied to Broken Hill, Australia. 2005. U. S. Geological Survey Open‐File Report 2005–1428.
  16. Muñoz‐MartínA. and De VicenteG.1998. Cuantificación del acortamiento alpino y estructura en profundidad del extremo sur‐occidental de la Cordillera Ibérica (Sierras de Altomira y Bascuñana). Revista de la Sociedad Geológica de España11, 39–58.
    [Google Scholar]
  17. NettletonL. L.1971. Elementary Gravity and Magnetics for Geologists and Seismologists . Society of Exploration Geophysicists, Tulsa, OK.
  18. Piña‐VarasP., LedoJ., QueraltP., RocaE., García‐LobónJ. L., IbarraP. and BieteC.2013. Two‐dimensional magnetotelluric characterization of the El Hito Anticline (Loranca Basin, Spain), Journal of Applied Geophysics, 95, 121–134.
    [Google Scholar]
  19. PueyoE.L., Izquierdo‐LlavallE., Rodríguez‐PintóA., Rey‐MoralC., Oliva‐UrciaB., CasasA.M., et al.2015. Petrophysical properties in the Iberian Range and surrounding areas (NE Spain): 1‐density. Journal of Maps, 12, 836–844.
    [Google Scholar]
  20. QuerolR.1989. Geología del subsuelo de la Cuenca del Tajo, 48 pp. Escuela Técnica Superior de Ingenieros de Minas de Madrid, Madrid.
    [Google Scholar]
  21. TarantolaA.2005. Inverse Problem Theory and Model Parameter Estimation , 342 pp. SIAM. Philadelphia, PA.
  22. Valcárcel‐RodríguezM.2015. Reconstrucción y restitución 3D del anticlinal de Puerta‐Pareja y estudio de su evolución deformacional y cinemática en su contexto regional (cuenca de Loranca y Sierra de Altomira) . PhD Thesis, Universitat de Barcelona, Barcelona, Spain, 285 pp.
  23. ZengH.1989. Estimation of the degree of polynomial fitted to gravity anomalies and its application. Geophysical Prospecting, 37, 959–973.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12745
Loading
/content/journals/10.1111/1365-2478.12745
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Gravity , Inversion , Modelling , Petrophysics and Reservoir geophysics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error