1887
Volume 67, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The zeta potential is one of the most important parameters influencing the electrokinetic coupling. Most reservoir rocks are saturated or partially saturated by natural water containing various types of ions (mostly monovalent and divalent ions). Therefore, understanding how the zeta potential behaves for mixtures of electrolytes is very important. In this work, measurements of the zeta potential for four different silica‐based samples saturated by seven different mixtures of monovalent and divalent electrolytes are then carried out at a fixed ionic strength. It is seen that the magnitude of the measured zeta potential decreases with increasing divalent cation fraction. The experimental results are then explained by a model developed for mixtures of monovalent and divalent electrolytes. The result shows that the theoretical model is able to reproduce the main trend of the variation of the zeta potential with divalent cation fractions. Additionally, the model can fit the experimental data reported in literature well for reasonable values of the input parameters.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12759
2019-03-05
2024-04-19
Loading full text...

Full text loading...

References

  1. AdamsonA., 1976. Physical Chemistry of Surfaces. John Wiley and Sons.
    [Google Scholar]
  2. AizawaK., OgawaY. and IshidoT.2009. Groundwater flow and hydrothermal systems within volcanic edifices: Delineation by electric self‐potential and magnetotellurics. Journal of Geophysical Research114, B01208.
    [Google Scholar]
  3. AllegreV., JouniauxL., LehmannF. and SailhacP.2010. Streaming potential dependence on water‐content in Fontainebleau sand. Geophysical Journal International182, 1248–1266.
    [Google Scholar]
  4. AllegreV., JouniauxL., LehmannF., SailhacP. and ToussaintR.2015. Influence of water pressure dynamics and fluid flow on the streaming potential response for unsaturated conditions. Geophysical Prospecting63, 694–712.
    [Google Scholar]
  5. AllgreV., JouniauxL., LehmannF. and SailhacP.2011. Reply to comment by A. Revil and N. Linde on streaming potential dependence on water‐content in Fontainebleau sand. Geophysical Journal International186, 115–117.
    [Google Scholar]
  6. AubertM. and AtanganaQ.Y.1996. Self potential method in hydrogeological exploration of volcanic areas. Ground Water34, 1010–1016.
    [Google Scholar]
  7. BardA. and FaulknerL.1980. Electrochemical Methods, Fundamentals and Applications. John Wiley and Sons.
    [Google Scholar]
  8. BardA. J. and FaulknerL.R.2001. Electrochemical Methods: Fundamentals and Applications. John Wiley and Sons.
    [Google Scholar]
  9. BehrensS. H. and GrierD.G.2001. The charge of glass and silica surfaces. The Journal of Chemical Physics115, 6716.
    [Google Scholar]
  10. BrothelandeE., FinizolaA., PeltierA., DelcherE., KomorowskiJ.‐C., GangiF.D.2014. Fluid circulation pattern inside La Soufrire volcano (Guadeloupe) inferred from combined electrical resistivity tomography, self‐potential, soil temperature and diffuse degassing measurements. Journal of Volcanology and Geothermal Research288, 105–122.
    [Google Scholar]
  11. BrownR.1980. Connection between formation factor for electrical resistivity and fluid solid coupling factor in biot's equations for acoustic waves in fluid‐filled porous media. Geophysics45, 1269–1275.
    [Google Scholar]
  12. CevheriN. and YodaM.2012. Evanescent‐wave particle velocimetry studies of electrokinetically driven flows: Divalent counterion effects. ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer.
  13. ChassagneC., MiettaF. and WinterwerpJ.2009. Electrokinetic study of kaolinite suspensions. Journal of Colloid and Interface Science336, 352–359.
    [Google Scholar]
  14. CiceroneD., RegazzonilA. and BlesaM.1992. Electrokinetic properties of the calcite/water interface in the presence of magnesium and organic matter. Journal of Colloid and Interface Science154, 423–433.
    [Google Scholar]
  15. Corwin, R. F. and HooverD.B.1979. The self‐potential method in geothermal exploration. Geophysics44, 226–245.
    [Google Scholar]
  16. DandekarA. Y.2013. Petroleum Reservoir Rock and Fluid Properties. CRC Press.
    [Google Scholar]
  17. DattaS., ConliskA., LiH. and YodaM.2009. Effect of divalent ions on electroosmotic flow in microchannels. Mechanics Research Communications36, 65–74.
    [Google Scholar]
  18. DavisJ.A., JamesR.O. and LeckieJ.O.1978. Surface ionization and complexation at the oxide/water interface. I. computation of electrical double layer properties in simple electrolytes. Journal of Colloid and Interface Science63, 480–499.
    [Google Scholar]
  19. DavisJ.A. and KentD.B.1990. Surface complexation modeling in aqueous geochemistry. In: Mineral‐Water Interface Geochemistry (eds. Michael F.Jr. Hochella and Art F.White). Mineralogical Society of America Reviews in Mineralogy, Vol. 23, 177‐260.
    [Google Scholar]
  20. DebyeP. and HuckelE.1923. The theory of electrolytes. I. Lowering of freezing point and related phenomena. Physikalische Zeitschrift24, 185–206.
    [Google Scholar]
  21. DickensJ., GorseJ., EverhartJ. and RyanM.1994. Dependence of electroosmotic flow in capillary electrophoresis on group I and II metal ions. Journal of Chromatography B657, 401–407.
    [Google Scholar]
  22. DoveP.M. and CravenC.M.2005. Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions. Geochimica et Cosmochimica Acta69, 4963–4970.
    [Google Scholar]
  23. DoveP.M. and RimstidtJ.D.1994. Silica‐water interactions. Reviews in Mineralogy and Geochemistry29, 259–308.
    [Google Scholar]
  24. FagerlundF. and HeinsonG.2003. Detecting subsurface groundwater flow in fractured rock using self‐potential (sp) methods. Environmental Geology43, 782–794.
    [Google Scholar]
  25. FinizolaA., LenatN., MacedoO., RamosD., ThouretJ. and SortinoF.2004. Fluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self‐potential measurements. Journal of Volcanology and Geothermal Research135, 343–360.
    [Google Scholar]
  26. Fiorentino, E.‐A., ToussaintR. and JouniauxL.2016. Lattice Boltzmann modelling of streaming potentials. variations with salinity in monophasic conditions. Geophysical Journal International205, 648–664.
    [Google Scholar]
  27. Fiorentino, E.‐A., ToussaintR. and JouniauxL.2017. Two‐phase lattice Boltzmann modelling of streaming potentials. influence of the air‐water interface on the electrokinetic coupling. Geophysical Journal International208, 1139–1156.
    [Google Scholar]
  28. GaramboisS. and DietrichM.2002. Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid‐saturated stratified porous media. Journal of Geophysical Research: Solid Earth107, ESE 5‐1 to ESE 5‐18.
    [Google Scholar]
  29. GloverP. and JacksonM.2010. Borehole electrokinetics. The Leading Edge29, 724–728.
    [Google Scholar]
  30. Glover, P.W.J,. 2018. Modelling pH‐dependent and microstructure‐dependent streaming potential coefficient and zeta potential of porous sandstones. Transport in Porous Media124, 31–56.
    [Google Scholar]
  31. Glover, P.W.J., MeredithP.G., SammondsP.R. and MurrellS.A.F.1994. Ionic surface electrical conductivity in sandstone. Journal of Geophysical Research: Solid Earth99, 21635–21650.
    [Google Scholar]
  32. Glover, P. W. J., WalkerE. and JacksonM.2012. Streaming‐potential coefficient of reservoir rock: A theoretical model. Geophysics77, D17–D43.
    [Google Scholar]
  33. GuY. and LiD.2000. The zeta potential of glass surface in contact with aqueous solutions. Journal of Colloid and Interface Science226, 328–339.
    [Google Scholar]
  34. GuanW. and HuH.2008. Finite‐difference modeling of the electroseismic logging in a fluid‐saturated porous formation. Journal of Computational Physics227, 5633–5648.
    [Google Scholar]
  35. GuichetX., JouniauxL. and CatelN.2006. Modification of streaming potential by precipitation of calcite in a sandwater system: laboratory measurements in the pH range from 4 to 12. Geophysical Journal International166, 445–460.
    [Google Scholar]
  36. GuichetX., JouniauxL. and PozziJ.‐P.2003. Streaming potential of a sand column in partial saturation conditions. Journal of Geophysical Research: Solid Earth108(B3), 2141.
    [Google Scholar]
  37. HaartsenM. and PrideS.R.1997. Electroseismic waves from point sources in layered media. Journal of Geophysical Research102, 24745–24769.
    [Google Scholar]
  38. HeberlingF., TrainorT.P., LtzenkirchenJ., EngP., DeneckeM.A. and BosbachD.2011. Structure and reactivity of the calcite‐water interface. Journal of Colloid and Interface Science354, 843–857.
    [Google Scholar]
  39. HuH., GuanW. and HarrisJ.M.2007. Theoretical simulation of electroacoustic borehole logging in a fluid‐saturated porous formation. The Journal of the Acoustical Society of America122, 135–145.
    [Google Scholar]
  40. HunterR.J.1981. Zeta Potential in Colloid Science. Academic Press, New York.
    [Google Scholar]
  41. IbanezM., WijdeveldA. and ChassagneC.2014. The role of mono‐ and divalent ions in the stability of kaolinite suspensions and fine tailings. Clays and Clay Minerals62, 374.
    [Google Scholar]
  42. IlerR.K.1979. The Chemistry of Silica. John Wiley and Sons.
    [Google Scholar]
  43. IshidoT.2004. Electrokinetic mechanism for the w‐shaped self‐potential profile on volcanoes. Geophysical Research Letters31, L15616.
    [Google Scholar]
  44. IshidoT., MizutanH. and BabaK.1983. Streaming potential observations, using geothermal wells and in situ electrokinetic coupling coefficients under high temperature. Tectonophysics91, 89–104.
    [Google Scholar]
  45. IshidoT. and MizutaniH.1981. Experimental and theoretical basis of electrokinetic phenomena in rock‐water systems and its applications to geophysics. Journal of Geophysical Research86, 1763–1775.
    [Google Scholar]
  46. IshidoT. and PritchettJ.1999. Numerical simulation of electrokinetic potentials associated with subsurface fluid flow. Journal of Geophysical Research104, 15247–15259.
    [Google Scholar]
  47. IsraelachviliJ.1992. Intermolecular and Surface Forces. Academic Press.
    [Google Scholar]
  48. JaafarM.Z., VinogradovJ. and JacksonM.D.2009. Measurement of streaming potential coupling coefficient in sandstones saturated with high salinity NaCl brine. Geophysical Research Letters36, L21306.
    [Google Scholar]
  49. JacksonM., ButlerA. and VinogradovJ.2012. Measurements of spontaneous potential in chalk with application to aquifer characterization in the southern UK. Quarterly Journal of Engineering Geology & Hydrogeology45, 457–471.
    [Google Scholar]
  50. Jackson, M.D. andVinogradov J.2012. Impact of wettability on laboratory measurements of streaming potential in carbonates. Colloids and Surfaces A: Physicochemical and Engineering Aspects393, 86–95.
    [Google Scholar]
  51. JoergensenS.S.andTovborg‐Jensen A.1967. Acid‐base properties of quartz suspensions. The Journal of Physical Chemistry71, 745–750.
    [Google Scholar]
  52. JouniauxL., BernardM.L., ZamoraM. and PozziJ.P.2000. Streaming potential in volcanic rocks from mount pelée. Journal of Geophysical Research B105, 8391–8401.
    [Google Scholar]
  53. JouniauxL. and IshidoT.2012. Electrokinetics in earth sciences: A tutorial. International Journal of Geophysics2012, article ID 286107,
    [Google Scholar]
  54. JouniauxL., PozziJ., BerthierJ. and MasseP.'1999. Detection of fluid flow variations at the Nankai Trough by electric and magnetic measurements in boreholes or at the seafloor. Journal of Geophysical Research104, 29293–29309.
    [Google Scholar]
  55. JouniauxL. and PozziJ.P.1995. Streaming potential and permeability of saturated sandstones under triaxial stress: Consequences for electrotelluric anomalies prior to earthquakes. Journal of Geophysical Research100, 10.197–10.209.
    [Google Scholar]
  56. JouniauxL. and PozziJ.P‐.1997. Laboratory measurements anomalous 0.10.5 Hz streaming potential under geochemical changes: Implications for electrotelluric precursors to earthquakes. Journal of Geophysical Research: Solid Earth102, 15335–15343.
    [Google Scholar]
  57. KirbyB.J. and HasselbrinkE.J.2004. Zeta potential of microfluidic substrates: 1. theory, experimental techniques, and effects on separations. Electrophoresis25, 187–202.
    [Google Scholar]
  58. KosmulskiM.1996. Adsorption of cadmium on alumina and silica: Analysis of the values of stability constants of surface complexes calculated for different parameters of triple layer model. Colloids and Surfaces A: Physicochemical and Engineering Aspects117, 201–214.
    [Google Scholar]
  59. KosmulskiM. and DahlstenD.2006. High ionic strength electrokinetics of clay minerals. Colloids and Surfaces, A: Physicochemical and Engineering Aspects291, 212–218.
    [Google Scholar]
  60. KumarN.2004. Comprehensive Physics XII. Laxmi Publications, New Delhi, India.
    [Google Scholar]
  61. KuvshinovB.N.2012. Shell International Exploration and Production. Mircrostructure Properties of Berea Sandstones. Rijswijk, The Netherlands.
    [Google Scholar]
  62. LiS.X., PengraD.B. and WongP.Z.1995. Onsager's reciprocal relation and the hydraulic permeability of porous media. Physical Review E51, 5748–5751.
    [Google Scholar]
  63. LideD.R.2004. CRC Handbook of Chemistry and Physics. CRC Press.
    [Google Scholar]
  64. LobbusM., SonnfeldJ., Van LeeuwenH., VogelsbergerW. and LyklemaJ.2000. An improved method for calculating zeta potentials from measurements of the electrokinetic sonic amplitude. Journal of Colloid and Interface Science229, 174–183.
    [Google Scholar]
  65. LorneB., PerrierF. and AvouacJ.P.1999. Streaming potential measurements. 1. Properties of the electrical double layer from crushed rock samples. Journal of Geophysical Research104, 17.857–17.877.
    [Google Scholar]
  66. LuongD. and SprikR.2014. Examination of a theoretical model of streaming potential coupling coefficient. International Journal of Geophysics2014, article ID 471819.
    [Google Scholar]
  67. LuongD.T.andSprik R.2016. Zeta potential in porous rocks in contact with monovalent and divalent electrolyte aqueous solutions. Geophysics81, D303–D314.
    [Google Scholar]
  68. MahantaK.K., MishraG. and KansalM.2012. Estimation of electric double layer thickness from linearized and nonlinear solutions of Poisson Boltzmann equation for single type of ions. Applied Clay Science59, 1–7.
    [Google Scholar]
  69. MahantaK.K., MishraG.C. and KansalM.2014. Estimation of the electric double layer thickness in the presence of two types of ions in soil water. Applied Clay Science87, 212–218.
    [Google Scholar]
  70. Martinez‐PaganP., JardaniA., RevilA. and HaasA.2010. Self‐potential monitoring of a salt plume. Geophysics75, WA17–WA25.
    [Google Scholar]
  71. MauriG., Williams‐JonesG. and SaraccoG.2010. Depth determinations of shallow hydrothermal systems by self‐potential and multi‐scale wavelet tomography. Journal of Volcanology and Geothermal Research191, 233–244.
    [Google Scholar]
  72. MitchellJ.K.1976. Fundamentals of Soil Behavior. John Wiley and Sons.
    [Google Scholar]
  73. MizutaniH., IshidoT., YokokuraT. and OhnishiS.1976. Electrokinetic phenomena associated with earthquakes. Geophysics Research Letters3, 365–368.
    [Google Scholar]
  74. MorganF.D., WilliamsE.R. and MaddenT.R.1989. Streaming potential properties of westerly granite with applications. Journal of Geophysical Research94, 12.449–12.461.
    [Google Scholar]
  75. NaudetV., RevilA., BotteroJ.‐Y. and BgassatP.2003. Relationship between self‐potential (SP) signals and redox conditions in contaminated groundwater. Geophysical Research Letters30(21), 2091.
    [Google Scholar]
  76. OnizawaS., MatsushimaN., IshidoT., HaseH., TakakuraS. and NishiY.2009. Self‐potential distribution on active volcano controlled by three‐dimensional resistivity structure in Izu‐Oshima, Japan. Geophysical Journal International178, 1164–1181.
    [Google Scholar]
  77. ParksA. G.1965. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chemical Reviews65, 177–198.
    [Google Scholar]
  78. PengraD., LiS.X. and WongP.1999. Determination of rock properties by low frequency ac electrokinetics. Journal of Geophysical Research104, 29485–29508.
    [Google Scholar]
  79. PerrierF. and FroidefondT.2003. Electrical conductivity and streaming potential coefficient in a moderately alkaline lava series. Earth and Planetary Science Letters210, 351–363.
    [Google Scholar]
  80. PierreA., LamarcheJ., MercierR., FoissyA. and PerselloJ.1990. Calcium as potential determining ions in aqueous calcite suspensions. Journal of Dispersion Science and Technology11, 611–635.
    [Google Scholar]
  81. PozziJ. and JouniauxL.1994. Electrical effects of fluid circulation in sediments and seismic prediction. Comptes Rendus de l'Academie des Sciences, Serie II318, 7377.
    [Google Scholar]
  82. PrakashS., ZambranoH.A., RangharajanK.K., KimE.R., VasquezN. and ConliskA.T.2016. Electrokinetic transport of monovalent and divalent cations in silica nanochannels. Microfluid Nanofluid20, 8.
    [Google Scholar]
  83. PrideS.1994. Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Review B50, 15678–15696.
    [Google Scholar]
  84. RangharajanK.K., FuestM., ConliskA.T. and PrakashS.2016. Transport of multicomponent, multivalent electrolyte solutions across nanocapillaries. Microfluid Nanofluid20, 54.
    [Google Scholar]
  85. ReppertP.M. and MorganF.D.2003. Temperature‐dependent streaming potentials. Journal of Geophysical Research108, 2547.
    [Google Scholar]
  86. RevilA. and GloverP.W.J.1997. Theory of ionic‐surface electrical conduction in porous media. Physical Review B55, 1757–1773.
    [Google Scholar]
  87. RevilA. and PezardP.A.1998. Streaming electrical potential anomaly along faults in geothermal areas. Geophysical Research Letters25, 3197–3200.
    [Google Scholar]
  88. RevilA., PezardP.A. and GloverP.W.J.1999. Streaming potential in porous media 1. theory of the zeta potential. Journal of Geophysical Research104, 20021–20031.
    [Google Scholar]
  89. SakaE.E.andGuler C.2006. The effects of electrolyte concentration, ion species and pH on the zeta potential and electrokinetic charge density of montmorillonite. Clay Minerals41, 853.
    [Google Scholar]
  90. SaraccoG., LabazuyP. and MoreauF.2004. Localization of self‐potential sources in volcano‐electric effect with complex continuous wavelet transform and electrical tomography methods for an active volcano. Geophysical Research Letters31, L12619.
    [Google Scholar]
  91. SaundersJ.H., JacksonM.D. and PainC.C.2008. Fluid flow monitoring in oil fields using downhole measurements of electrokinetic potential. Geophysics73, E165–E180.
    [Google Scholar]
  92. SenP.N. and GoodeP.A.1992. Influence of temperature on electrical conductivity on shaly sands. Geophysics57, 89–96.
    [Google Scholar]
  93. SternO.1924. Zur theorie der electrolytischen doppelschist. Zeitschrift fuer Elektrochemie30, 508–516.
    [Google Scholar]
  94. SumnerM.E.2000. Handbook of Soil Science. CRC Press.
    [Google Scholar]
  95. SverjenskyD.A.andSahai N.1996. Theoretical prediction of single‐site surface‐protonation equilibrium constants for oxides and silicates in water. Geochimica et Cosmochimica Acta60, 3773–3797.
    [Google Scholar]
  96. SzeA., EricksonD., RenL. and LiD.2004. Zeta‐potential measurement using the Smoluchowski equation and the slope of the current time relationship in electroosmotic flow. Journal of Colloid and Interface Science261, 402–410.
    [Google Scholar]
  97. TadrosT. and LyklemaJ.1969. The electrical double layer on silica in the presence of bivalent counter‐ions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry22, 1–7.
    [Google Scholar]
  98. ThanhL.D.andSprik R.2016. Permeability dependence of streaming potential coefficient in porous media. Geophysical Prospecting64, 714–725.
    [Google Scholar]
  99. TitovK., RevilA., KonosavskyP., StrafaceS. and TroisiS.2005. Numerical modelling of self‐potential signals associated with a pumping test experiment. Geophysical Journal International162, 641–650.
    [Google Scholar]
  100. TriqueM., RichonP., PerrierF., AvouacJ. and SabrouxJ.C.1999. Radon emanation and electric potential variations associated with transient deformation near reservoir lakes. Nature399, 137–141.
    [Google Scholar]
  101. VinogradovJ., JaafarM.Z. and JacksonM.D.2010. Measurement of streaming potential coupling coefficient in sandstones saturated with natural and artificial brines at high salinity. Journal of Geophysical Research115, B12204.
    [Google Scholar]
  102. VinogradovJ. and JacksonM.D.2015. Zeta potential in intact natural sandstones at elevated temperatures. Geophysical Research Letters42, 6287–6294.
    [Google Scholar]
  103. VinogradovJ., JacksonM.D. and ChameroisM.2018. Zeta potential in sandpacks: Effect of temperature, electrolyte pH, ionic strength and divalent cations. Colloids and Surfaces, A. Physicochemical and Engineering Aspects553, 259–271.
    [Google Scholar]
  104. WalkerE., GloverP.W.J., and RuelJ.2014. A transient method for measuring the dc streaming potential coefficient of porous and fractured rocks. Journal of Geophysical Research. Solid Earth119, 957–970.
    [Google Scholar]
  105. WardenS., GaramboisS., SailhacP., JouniauxL. and BanoM.2012. Curvelet‐based seismoelectric data processing. Geophysical Journal International190, 1533–1550.
    [Google Scholar]
  106. WieseG.R., JamesR.O. and HealyT.W.1971. Discreteness of charge and solvation effects in cation adsorption at the oxide/water interface. Discussions of the Faraday Society52, 302–311.
    [Google Scholar]
  107. WurmstichB. and MorganF.D.1994. Modeling of streaming potential responses caused by oil well pumping. Geophysics59, 46–56.
    [Google Scholar]
  108. YukselenY. and KayaA.2003. Zeta potential of kaolinite in the presence of alkali, alkaline earth and hydrolyzable metal ions. Water, Air, and Soil Pollution145, 155–168.
    [Google Scholar]
  109. ZhangP. and AustadT.2006. Wettability and oil recovery from carbonates. Effects of temperature and potential determining ions. Colloids and Surfaces, A: Physicochemical and Engineering Aspects279, 179–187.
    [Google Scholar]
  110. ZhengZ., HansfordD.J. and ConliskA.T.2003. Effect of multivalent ions on electroosmotic flow in micro‐ and nanochannels. Electrophoresis24, 3006–3017.
    [Google Scholar]
  111. ZysermanF., MonachesiL. and JouniauxL.2017a. Dependence of shear wave seismoelectrics on soil textures. a numerical study in the vadose zone. Geophysical Journal International208, 918–935.
    [Google Scholar]
  112. ZysermanF., MonachesiL. and JouniauxL.2017b. Reply to comment on dependence of shear wave seismoelectrics on soil textures: A numerical study in the vadose zone by F.I. Zyserman, L.B. Monachesi and L. Jouniaux by Revil, A. Geophysical Journal International210, 1652–1658.
    [Google Scholar]
  113. ZysermanF.I., JouniauxL., WardenS. and GaramboisS.2015. Borehole seismoelectric logging using a shear‐wave source: Possible application to CO2 disposal? International Journal of Greenhouse Gas Control33, 89–102.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12759
Loading
/content/journals/10.1111/1365-2478.12759
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Electrolytes; Mixtures; Porous media; Streaming potential; Zeta potential

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error