1887
Volume 67, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The multi‐parameter full waveform inversion is an essential tool to estimate subsurface anisotropic properties in a reservoir that may have complex geological behaviour requiring an elastic orthorhombic medium description. For such elastic orthorhombic media, finding a proper inversion strategy to mitigate parameter trade‐off and reduce the Null space is crucial considering the large number of parameters describing the medium. We apply our recently developed strategy for orthorhombic medium inversion on synthetic and real ocean bottom cable data, and find the most efficient inversion strategy. At first, we analyse the trade‐off patterns in three elastic orthorhombic parameterizations for a hockey‐puck‐shaped model. We, then, compare the performance of these orthorhombic parameterizations on a 3D synthetic ocean bottom cable data, which are obtained from a channel‐shaped model. By interpreting the inverted models based on analytic radiation patterns of the nine elastic orthorhombic parameters in each parameterization, we observe that parameterizations, which have one P‐wave velocity, one S‐wave velocity and seven dimensionless parameters, can be optimal to recover subsurface isotropic properties in the early stages of inversion. Then, we show that the choice of three anisotropic parameters and their deviations along the horizontal plane helps us mitigate the complexity of the multi‐parameter inversion by decoupling anisotropic features, which have vertical and horizontal symmetric axes, respectively. This decoupling of isotropic and anisotropic properties enables us to perform the multi‐parameter anisotropic inversion in a multi‐stage manner. In addition, for the marine acquisition, we show that the number of parameters can be reduced from 9 to 4, which makes the multi‐parameter inversion more practical. Finally, we apply the elastic orthorhombic inversion to real ocean bottom cable data.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12768
2019-03-05
2020-05-26
Loading full text...

Full text loading...

References

  1. AlbertinU., ShenP., SekarA., JohnsenT., WuC., NiheiK., et al. 2016. 3D orthorhombic elastic full‐waveform inversion in the reflection domain from hydrophone data. 86th annual international meeting, SEG, Dallas. Expanded Abstracts, 1094–1098.
  2. AlkhalifahT.2003. An acoustic wave equation for orthorhombic anisotropy. Geophysics68, 1169–1172.
    [Google Scholar]
  3. AlkhalifahT.2015. Scattering‐angle based filtering of the waveform inversion gradients. Geophysical Journal International200, 363–373.
    [Google Scholar]
  4. AlkhalifahT.2016. Research note: Insights into the data dependency on anisotropy: an inversion prospective. Geophysical Prospecting64, 505–513.
    [Google Scholar]
  5. AlkhalifahT. and PlessixR.‐E.2014. A recipe for practical full‐waveform inversion in anisotropic media: an analytical parameter resolution study. Geophysics79, R91–R101.
    [Google Scholar]
  6. BohlenT.2002. Parallel 3‐D viscoelastic finite difference seismic modeling. Computers and Geosciences28, 887–899.
    [Google Scholar]
  7. BrossierR., OpertoS. and VirieuxJ.2009. Seismic imaging of complex onshore structures by 2D elastic frequency‐domain full‐waveform inversion. Geophysics74, WCC105–WCC118.
    [Google Scholar]
  8. BrossierR., EtienneV., HuG., OpertoS. and VirieuxJ.2013. Performances of 3d frequency‐domain full‐waveform inversion based on frequency‐domain direct‐solver and time‐domain modeling: application to 3D OBC data from the Valhall field. Presented at International petroleum Technology Conference 2013, Beijing. IPTC 16881.
  9. ButzerS.2015. 3D elastic time‐frequency full‐waveform inversion. PhD thesis, Karlsruhe, Karlsruhe Institute Technology (KIT).
  10. ChoiY. and AlkhalifahT.2012. Application of multi‐source waveform inversion to marine streamer data using the global correlation norm. Geophysical Prospecting60, 748–758.
    [Google Scholar]
  11. EtienneV., OpertoS., VirieuxJ., JiaY., et al. 2010. Computational issues and strategies related to full waveform inversion in 3D elastic media: methodological developments. Presented at the 2010 SEG annual meeting, Denver. 1050–1054.
  12. GholamiY., BrossierR., OpertoS., RibodettiA. and VirieuxJ.2013. Which parameterization is suitable for acoustic vertical transverse isotropic full waveform inversion? Part 1: Sensitivity and trade‐off analysis. Geophysics78, R81–R105.
    [Google Scholar]
  13. Gosselin‐ClicheB. and GirouxB.2014. 3D frequency‐domain finite‐difference viscoelastic wave modeling using weighted average 27‐point operators with optimal coefficients. Geophysics79, T169–188.
    [Google Scholar]
  14. GravesR.W.1996. Simulating seismic wave propagation in 3D elastic media using staggered‐grid finite differences. Bulletin of the Seismological Society of America86, 1091–1106.
    [Google Scholar]
  15. HaT., ChungW. and ShinC.2009. Waveform inversion using a back‐propagation algorithm and a Huber function norm. Geophysics74, R15–R24.
    [Google Scholar]
  16. IvanovY. and StovaA.2016. Upscaling in orthorhombic media: behavior of elastic parameters in heterogeneous fractured earth. Geophysics81, C113–C126.
    [Google Scholar]
  17. KalitaM. and AlkhalifahT.2016. Full waveform inversion using the excitation representation of the source wavefield. 86th annual international meeting, SEG, Dallas, USA. Expanded Abstracts, 1084–1088.
  18. KamathN. and TsvankinI.2016. Elastic full‐waveform inversion for VTI media: methodology and sensitivity analysis. Geophysics81, C53–C68.
    [Google Scholar]
  19. KӧhnD., NilD.D., KurzmannA., PrzebindowskaA. and BohlenT.2012. On the influence of model parametrization in elastic full waveform tomography. Geophysical Journal International191, 325–345.
    [Google Scholar]
  20. MasmoudiN. and AlkhalifahT.2016. A new parameterization for waveform inversion in acoustic orthorhombic media. Geophysics81, R157–R171.
    [Google Scholar]
  21. MétivierL., BretaudeauF., BrossierR., OpertoS. and VirieuxJ.2014. Full waveform inversion and the truncated newton method: quantitative imaging of complex subsurface structures. Geophysical Prospecting62, 1353–1375.
    [Google Scholar]
  22. MittetR.1994. Implementation of the kirchho_ integral for elastic waves in staggered‐grid modeling schemes. Geophysics59, 1894–1901.
    [Google Scholar]
  23. OhJ.W. and AlkhalifahT.2016a. Elastic orthorhombic anisotropic parameter inversion: an analysis of parameterization. Geophysics81, C279–C293.
    [Google Scholar]
  24. OhJ.W. and AlkhalifahT.2016b. The scattering potential of partial derivative wavefields in 3D elastic orthorhombic media: an inversion prospective. Geophysical Journal International206, 1740–1760.
    [Google Scholar]
  25. OhJ.W. and AlkhalifahT.2018. Full waveform inversion using envelope‐based global correlation. Geophysical Journal International213, 815–823.
    [Google Scholar]
  26. OhJ.W., AlkhalifahT. and MinD.J.2015. Multi‐stage full waveform inversion strategy for 2D elastic VTI media. 85th annual international meeting, SEG, New Orleans. Expanded Abstracts, 1204–1208.
  27. OhJ.W., KalitaM. and AlkhalifahT.2018. 3D elastic full waveform inversion using P‐wave excitation amplitude: application to ocean bottom cable field data. Geophysics83, R129–R140.
    [Google Scholar]
  28. OpertoS., BrossierR., CombeL., MétivierL., RibodettiA. and VirieuxJ.2014. Computationally efficient three‐dimensional acoustic finite‐difference frequency‐domain seismic modeling in vertical transversely isotropic media with sparse direct solver. Geophysics79, T257–T275.
    [Google Scholar]
  29. OpertoS.Y., GholamiY., PrieuxV., RibodettiA., BrossierR., MétivierL., et al. 2013. A guided tour of multiparameter full‐waveform inversion with multicomponent data: from theory to practice. The Leading Edge32, 1040–1054.
    [Google Scholar]
  30. PrattR.G., ShinC. and HickG.1998. Gauss‐Newton and full Newton methods in frequency‐space seismic waveform inversion. Geophysical Journal International133, 341–362.
    [Google Scholar]
  31. RaknesE.B. and ArntsenB.2015. A numerical study of 3D elastic time‐lapse full waveform inversion using multicomponent seismic data. Geophysics80, R303–R315.
    [Google Scholar]
  32. RaknesE.B. and WeibullW.2016. Efficient 3D elastic full‐waveform inversion using wavefield reconstruction methods. Geophysics81, R45–R55.
    [Google Scholar]
  33. RodenJ.A. and GedneyS.D.2000. Convolution PML (CPML): an efficient FDTD implementation of the CFS‐PML for arbitrary media. Microwave and Optical Technology Letters27, 334–339.
    [Google Scholar]
  34. SearsT.J., BartonP.J. and SinghS.C.2010. Elastic full waveform inversion of multicomponent ocean‐bottom cable seismic data: application to Alba Field, U.K. North Sea. Geophysics75, R105–R119.
    [Google Scholar]
  35. ShinC., JangS. and MinD.J.2001. Improved amplitude preservation for prestack depth migration by inverse scattering theory. Geophysical Prospecting49, 592–606.
    [Google Scholar]
  36. SirgueL., EtgenJ. and AlbertinU.2008. 3D frequency domain waveform inversion using time domain finite difference methods. 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008, Rome. F022.
  37. SongX. and AlkhalifahT.2013. Modeling of pseudo‐acoustic p‐waves in orthorhombic media with a low‐rank approximation. Geophysics78, C33–C40.
    [Google Scholar]
  38. SzydlikT., SmithP., WayS., AamodtL. and FriedrichC.2007. 3D PP/PS prestack depth migration on the Volve field. First Break25, 43–47.
    [Google Scholar]
  39. TarantolaA.1986. A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics51, 1893–1903.
    [Google Scholar]
  40. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  41. TsvankinI.1997. Anisotropic parameters and P‐wave velocity for orthorhombic media. Geophysics62, 1292–1309.
    [Google Scholar]
  42. VirieuxJ. and OpertoS.2009. An overview of full‐waveform inversion in exploration geophysics. Geophysics74, WCC127–WCC152.
    [Google Scholar]
  43. WangT.F. and ChengJ.B.2017. Elastic full waveform inversion based on mode decomposition: the approach and mechanism. Geophysical Journal International209, 606–622.
    [Google Scholar]
  44. YangP., GaoJ. and WangB.2014. RTM using effective boundary saving: a staggered grid GPU implementation. Computers and Geosciences68, 64–72.
    [Google Scholar]
  45. ZhouH., PhamD., GrayS. and WangB.2003. 3‐D tomographic velocity analysis in transversely isotropic media. 73rd annual international meeting, SEG, Dallas. Expanded Abstracts, 650–653.
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12768
Loading
/content/journals/10.1111/1365-2478.12768
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 3D problem , Anisotropic parameter and Full‐waveform inversion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error