1887
Volume 68 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Extracting body‐wave arrivals from ambient seismic recordings remains a challenging task, largely because ambient records are usually dominated by surface‐wave energy. Most ambient seismic data‐processing strategies aimed at enhancing body‐wave energy focus on a cross‐correlation plus stack methodology. While this approach is useful for interferometric investigations, it effectively squares the magnitude of unwanted coherent noise events (e.g. surface waves, burst‐like or strong monochromatic energy) that commonly overpower ambient body‐wave signal. Accordingly, coherent noise events are usually treated with a binary accept‐or‐reject decision of individual data windows based on root‐mean‐squared energy considerations. Applying a data‐processing workflow to uncorrelated ambient seismic data represents an alternate strategy for mitigating coherent noise. However, this pre‐stack methodology requires significant computational effort due to the often terabyte‐sized data volumes. To make this approach feasible, we outline an automated processing workflow to automatically identify and mitigate coherent noise events that otherwise does not severely degrade the remaining waveforms. After each processing step, we apply a number of quality control measures to monitor the convergence rate of cross‐correlation plus stack waveforms and for evidence of emerging body‐wave reflection events. We apply the processing flow to an ambient seismic data set acquired on a large‐N array at a mine site near Lalor Lake, Manitoba, Canada. Our quality control analyses suggest that automated preprocessing of uncorrelated ambient seismic recordings successfully mitigates unwanted impulsive and monochromatic coherent noise events. Accordingly, we assert that applying an automated data‐processing approach would be beneficial for body‐wave and other imaging and inversion analyses applied to ambient seismic recordings.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12794
2019-04-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/gpr/68/1/gpr12794.html?itemId=/content/journals/10.1111/1365-2478.12794&mimeType=html&fmt=ahah

References

  1. AbeS., KurashimoE., SatoH., HirataN., IwasakiT. and KawanakaT.2007. Interferometric seismic imaging of crustal structure using scattered teleseismic waves. Geophysical Research Letters34, L19305.
    [Google Scholar]
  2. Almagro VidalC., DraganovD., DrijkoningenG., van der NeutJ. and WapenaarK.2014. Retrieval of reflections from ambient noise using illumination diagnosis. Geophysical Journal International198, 1572–1584.
    [Google Scholar]
  3. ArtmanB.2007. Passive seismic imaging. PhD thesis, Stanford University, Stanford, CA.
    [Google Scholar]
  4. BakulinA. and CalvertR.2006. The virtual source method: Theory and case study. Geophysics71, SI139–SI150.
    [Google Scholar]
  5. BellefleurG., SchetselaarE., WhiteD., MiahK. and DueckP.2015. 3D seismic imaging of the Lalor volcanogenic massive sulphide deposit, Manitoba, Canada. Geophysical Prospecting63, 813–832.
    [Google Scholar]
  6. BensenG.D., RitzwollerM.H., BarminM.P., LevshinA.L., LinF., MoschettiM.P., ShapiroN.M. and YangY.2007. Processing seismic ambient noise data to obtain reliable broad‐band surface wave dispersion measurements. Geophysical Journal International169, 1239–1260.
    [Google Scholar]
  7. BostockM. G., RondenayS. and ShraggeJ.2001. Multiparameter two‐dimensional inversion of scattered teleseismic body waves: 1. Theory for oblique incidence. Journal of Geophysical Research: Solid Earth106, 30771–30782.
    [Google Scholar]
  8. BrenguierF., ShapiroN.M., CampilloM., FerrazziniV., DuputelZ., CoutantO. and NercessianA.2008. Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience1, 126–130.
    [Google Scholar]
  9. CampilloM. and PaulA.2003. Long‐range correlations in the diffuse seismic coda. Science299, 547–549.
    [Google Scholar]
  10. CheraghiS., CravenJ.A. and BellefleurG.2015. Feasibility of virtual source reflection seismology using interferometry for mineral exploration: A test study in the Lalor Lake volcanogenic massive sulphide mining area, Manitoba, Canada. Geophysical Prospecting63, 833–848.
    [Google Scholar]
  11. ClaerboutJ. F.2014. Geophysical Image Estimation by Example. LULU Press.
    [Google Scholar]
  12. ColeS. P.1995. Passive seismic and drill‐bit experiments using 2‐D arrays. PhD thesis, Stanford University, Stanford, CA.
    [Google Scholar]
  13. CzarnyR., MarcakH., NakataN., PileckiZ. and IsakowZ.2016. Monitoring velocity changes caused by underground coal mining using seismic noise. Pure and Applied Geophysics173, 1907–1916.
    [Google Scholar]
  14. de RidderS.A.L.2014. Passive seismic surface‐wave interferometry for reservoir‐scale imaging. PhD thesis, Stanford University, Stanford, CA.
    [Google Scholar]
  15. DentithM. and MudgeS.T.2014. Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press.
    [Google Scholar]
  16. DraganovD., CampmanX., ThorbeckeJ. and VerdelA.2013. Seismic exploration‐scale velocities and structure from ambient seismic noise (>1 Hz). Journal of Geophysical Research: Solid Earth118, 4345–4360.
    [Google Scholar]
  17. Draganov, D., CampmanX., ThorbeckeJ., VerdelA. and WapenaarK.2009. Reflection images from ambient seismic noise. Geophysics74, A63–A67.
    [Google Scholar]
  18. Edme, P. and HallidayD.F.2016. Near‐surface imaging using ambient‐noise body waves. Interpretation4, SJ55–SJ65.
    [Google Scholar]
  19. Eisner, L., FischerT. and CalvezJ.H.L.2006. Detection of repeated hydraulic fracturing (out‐of‐zone growth) by microseismic monitoring. The Leading Edge25, 548–554.
    [Google Scholar]
  20. Forghani, F.and SniederR.2010. Underestimation of body waves and feasibility of surface‐wave reconstruction by seismic interferometry. The Leading Edge29, 790–794.
    [Google Scholar]
  21. Gerstoft, P., SabraK.G., RouxP., KupermanW.A. and FehlerM.C.2006. Green's functions extraction and surface‐wave tomography from microseisms in southern California. Geophysics71, SI23–SI31.
    [Google Scholar]
  22. GiannopoulosD., OrfanosC., LeontarakisK., LoisA. and MartakisN.2017. 3D shear wave velocity structure delineation using ambient noise automatic analysis. First Break35, 77–83.
    [Google Scholar]
  23. GirardA. J. and ShraggeJ.2020. Direct migration of ambient seismic data. Geophysical Prospecting68, 270–292.
    [Google Scholar]
  24. IssaN.A., LumleyD. and PevznerR.2017. Passive seismic imaging at reservoir depths using ambient seismic noise recorded at the Otway CO2 geological storage research facility. Geophysical Journal International209, 1622–1628.
    [Google Scholar]
  25. LandèsM., ShapiroN.M., SinghS. and JohnstonR.2009. Studying shallow seafloor structure based on correlations of continuous seismic records, 79th Annual International Meeting and International Exposition, Expanded Abstracts, 1693–1697.
  26. LeontarakisK., LoisA., PantazopoulosA. and PolychronopoulouK.2015. A comprehensive methodology for automated analysis of seismic records and its contribution to a passive seismic tomography survey in Delvina, SW Albania, 85th Annual International Meeting and International Exposition, New Orleans, USA, 18‐23 October 2015, Expanded Abstracts, 2563–2567.
  27. LinvilleA. F.1994. Single‐channel digital filter design for seismic applications. Geophysics59, 1584–1592.
    [Google Scholar]
  28. LobkisO.I. and WeaverR.L.2001. On the emergence of the Green's function in the correlations of a diffuse field. The Journal of the Acoustical Society of America110, 3011–3017.
    [Google Scholar]
  29. MaxwellS.2014. Microseismic imaging of hydraulic fracturing. Society of Exploration Geophysicists.
  30. McEvillyT.V. and MajerE.L.1982. ASP: An automated seismic processor for microearthquake networks. Bulletin of the Seismological Society of America72, 303.
    [Google Scholar]
  31. Miah, K.H., BellefleurG., SchetselaarE. and PotterD.K.2015. Seismic properties and effects of hydrothermal alteration on volcanogenic massive sulfide (VMS) deposits at the Lalor Lake in Manitoba, Canada. Journal of Applied Geophysics123, 141–152.
    [Google Scholar]
  32. Moschetti, M., RitzwollerM. and ShapiroN.2007. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems8, Q08010.
    [Google Scholar]
  33. NakataN., ChangJ.P., LawrenceJ.F. and BouéP.2015. Body wave extraction and tomography at Long Beach, California, with ambient‐noise interferometry. Journal of Geophysical Research: Solid Earth120, 1159–1173.
    [Google Scholar]
  34. NakataN., SniederR., TsujiT., LarnerK. and MatsuokaT.2011. Shear wave imaging from traffic noise using seismic interferometry by cross‐coherence. Geophysics76, SA97–SA106.
    [Google Scholar]
  35. OlivierG. and BrenguierF.2016. Interpreting seismic velocity changes observed with ambient seismic noise correlations. Interpretation4, SJ77–SJ85.
    [Google Scholar]
  36. Olivier, G., BrenguierF., CampilloM., LynchR. and RouxP.2015. Body‐wave reconstruction from ambient seismic noise correlations in an underground mine. Geophysics80, KS11–KS25.
    [Google Scholar]
  37. Oren, C. and NowackR.L.2017. Seismic body‐wave interferometry using noise autocorrelations for crustal structure. Geophysical Journal International208, 321–332.
    [Google Scholar]
  38. Orfanos, C., LeontarakisK., LoisA., PolychronopoulouK. and MartakisN.2016. Automatic passive seismic data processing with no prior information: the contribution of surface wave tomography. First Break34, 75–84.
    [Google Scholar]
  39. Panea, I., DraganovD., VidalC.A. and MocanuV.2014. Retrieval of reflections from ambient noise recorded in the Mizil area, Romania. Geophysics79, Q31–Q42.
    [Google Scholar]
  40. Rondenay, S., BostockM.G. and ShraggeJ.2001. Multiparameter two‐dimensional inversion of scattered teleseismic body waves: 3. Application to the Cascadia 1993 data set. Journal of Geophysical Research: Solid Earth106, 30795–30807.
    [Google Scholar]
  41. Roux, P., SabraK.G., GerstoftP., KupermanW.A. and FehlerM.C.2005. P‐waves from cross‐correlation of seismic noise. Geophysical Research Letters32, L19303.
    [Google Scholar]
  42. RuigrokE., CampmanX. and WapenaarK.2011. Nouveaux développements de l'imagerie et du suivi temporel à partir du bruit sismique (Extraction of P‐wave reflections from microseisms). Comptes Rendus Geoscience343, 512–525.
    [Google Scholar]
  43. SchmandtB. and ClaytonR.W.2013. Analysis of teleseismic P waves with a 5200‐station array in Long Beach, California: Evidence for an abrupt boundary to Inner Borderland rifting. Journal of Geophysical Research: Solid Earth118, 5320–5338.
    [Google Scholar]
  44. Sens‐SchönfelderC. and WeglerU.2006. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Research Letters33, L21302.
    [Google Scholar]
  45. ShapiroN.M., CampilloM., StehlyL. and RitzwollerM.H.2005. High‐resolution surface‐wave tomography from ambient seismic noise. Science307, 1615–1618.
    [Google Scholar]
  46. TselentisG.‐A., MartakisN., ParaskevopoulosP., LoisA. and SokosE.2012. Strategy for automated analysis of passive microseismic data based on S‐transform, Otsu's thresholding, and higher order statistics. Geophysics77, KS43–KS54.
    [Google Scholar]
  47. UgaldeA., Villase norA., GaiteB., CasqueroS., MartíD., CalahorranoA., MarzánI., CarbonellR. and EstaúnA.P.2013. Passive seismic monitoring of an experimental CO2 geological storage site in Hontomín (Northern Spain). Seismological Research Letters84, 75–84.
    [Google Scholar]
  48. WapenaarK.2004. Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letters93, 254301.
    [Google Scholar]
  49. WittenB. and ShraggeJ.2017. Microseismic image‐domain velocity inversion: Marcellus Shale case study. Geophysics82, KS99–KS112.
    [Google Scholar]
  50. XuZ., JuhlinC., GudmundssonO., ZhangF., YangC., KashubinA. and LüthS.2012. Reconstruction of subsurface structure from ambient seismic noise: an example from Ketzin, Germany. Geophysical Journal International189, 1085–1102.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12794
Loading
/content/journals/10.1111/1365-2478.12794
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Passive method; Seismics; Signal processing

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error