1887
Volume 67 Number 9
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The only restriction on the values of the elasticity parameters is the stability condition. Within this condition, we examine the Christoffel equation for nondetached slowness surfaces in transversely isotropic media. If the  slowness surface is detached, each root of the solubility condition corresponds to a distinct smooth wavefront. If the  slowness surface is nondetached, the roots are elliptical but do not correspond to distinct wavefronts; also, the and slowness surfaces are not smooth.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12811
2019-06-14
2020-07-06
Loading full text...

Full text loading...

References

  1. BackusG.E.1962. Long‐wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research67, 4427–4440.
    [Google Scholar]
  2. BerrymanJ.G.1979. Long‐wave elastic anisotropy in transversely isotropic media. Geophysics44, 896–917.
    [Google Scholar]
  3. BónaA., BucataruI. and SlawinskiM.A.2007a. Coordinate‐free characterization of the symmetry classes of elasticity tensors. Journal of Elasticity87, 109–132.
    [Google Scholar]
  4. BónaA., BucataruI. and SlawinskiM.A.2007b. Material symmetries versus wavefront symmetries. The Quarterly Journal of Mechanics and Applied Mathematics60, 73–84.
    [Google Scholar]
  5. BucataruI. and SlawinskiM.A.2009. On convexity and detachment of innermost wavefront‐slowness sheet. Geophysics74, WB63–WB66.
    [Google Scholar]
  6. HelbigK.1979. On: ‘The reflection, refraction, and diffraction of waves in media with elliptical velocity dependence’, by Franklyn K. Levin (Geophysics, April 1978, pp. 528–537). Geophysics44, 987–990.
    [Google Scholar]
  7. HelbigK.1983. Elliptical anisotropy—its significance and meaning. Geophysics48, 825–832.
    [Google Scholar]
  8. LevinF.K.1978. The reflection, refraction, and diffraction of waves in media with an elliptical velocity dependence. Geophysics43, 528–537.
    [Google Scholar]
  9. PostmaG.W.1955. Wave propagation in a stratified medium. Geophysics20, 780–806.
    [Google Scholar]
  10. RudzkiM.P.1911. Parametrische Darstellung der elastischen Welle in anisotropen Medien. Anzeiger der Akademie der Wissenschaften Krakau503–536.
    [Google Scholar]
  11. RudzkiM.P.2003. Parametric representation of the elastic wave in anisotropic media. Journal of Applied Geophysics54, 165–183.
    [Google Scholar]
  12. SlawinskiM.A.2015. Waves and Rays in Elastic Continua, 3rd edn. World Scientific.
    [Google Scholar]
  13. SlawinskiM.A.2018. Waves and Rays in Seismology: Answers to Unasked Questions, 2nd edn. World Scientific.
    [Google Scholar]
  14. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  15. WinsbergE.B.2010. Science in the Age of Computer Simulation. The University of Chicago Press.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12811
Loading
/content/journals/10.1111/1365-2478.12811
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Anisotropy and Mathematical formulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error