1887
Volume 67, Issue 8
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Convolutional neural networks can provide a potential framework to characterize groundwater storage from seismic data. Estimation of key components, such as the amount of groundwater stored in an aquifer and delineate water table level, from active‐source seismic data are performed in this study. The data to train, validate and test the neural networks are obtained by solving wave propagation in a coupled poroviscoelastic–elastic media. A discontinuous Galerkin method is applied to model wave propagation, whereas a deep convolutional neural network is used for the parameter estimation problem. In the numerical experiment, the primary unknowns estimated are the amount of stored groundwater and water table level, while the remaining parameters, assumed to be of less of interest, are marginalized in the convolutional neural network‐based solution. Results, obtained through synthetic data, illustrate the potential of deep learning methods to extract additional aquifer information from seismic data, which otherwise would be impossible based on a set of reflection seismic sections or velocity tomograms.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12831
2019-09-10
2024-04-24
Loading full text...

Full text loading...

References

  1. AbadiM., AgarwalA., BarhamP., BrevdoE., ChenZ., CitroC.et al. 2015. TensorFlow: large‐scale machine learning on heterogeneous systems. Technical Report.
    [Google Scholar]
  2. Araya‐PoloM., DahlkeT., FrognerC., ZhangC., PoggioT. and HohlD.2017. Automated fault detection without seismic processing. The Leading Edge36, 208–214.
    [Google Scholar]
  3. Araya‐PoloM., JenningsJ., AdlerA. and DahlkeT.2018. Deep‐learning tomography. The Leading Edge37, 58–66.
    [Google Scholar]
  4. ArtimoA., MäkinenJ., BergR.C., AbertC.C. and SalonenV.‐P.2003. Three‐dimensional geologic modeling and visualization of the Virttaankangas aquifer, southwestern Finland. Hydrogeology Journal11, 378–386.
    [Google Scholar]
  5. BalkhairK.S.2002. Aquifer parameters determination for large diameter wells using neural network approach. Journal of Hydrology265, 118–128.
    [Google Scholar]
  6. BengioY.2009. Learning deep architectures for AI. Foundations and Trends in Machine Learning2, 1–127.
    [Google Scholar]
  7. BoschM., MukerjiT. and GonzalezE.2010. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review. Geophysics75, 75A165–75A176.
    [Google Scholar]
  8. BudumaN.2017. Fundamentals of Deep Learning, Designing Next‐Generation Machine Intelligence Algorithms. O'Reilly Media, Newton, MA.
    [Google Scholar]
  9. CarcioneJ.M.2001. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media, 1st edn. Elsevier.
    [Google Scholar]
  10. CoulibalyP., AnctilF., AravenaR. and BobéeB.2001. Artificial neural network modeling of water table depth fluctuations. Water Resources Research37, 885–896.
    [Google Scholar]
  11. DaliakopoulosI.N., CoulibalyP. and TsanisI.K.2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology309, 229–240.
    [Google Scholar]
  12. de la PuenteJ., DumbserM., KäserM. and IgelH.2008. Discontinuous Galerkin methods for wave propagation in poroelastic media. Geophysics73, T77–T97.
    [Google Scholar]
  13. Dudley WardN.F., LähivaaraT. and EvesonS.2017. A discontinuous Galerkin method for poroelastic wave propagation: two‐dimensional case. Journal of Computational Physics350, 690–727.
    [Google Scholar]
  14. FetterC.W.2001. Applied Hydrogeology, 4 edn. Prentice Hall.
    [Google Scholar]
  15. GaboritM., DazelO., GöranssonP. and GabardG.2018. Coupling of finite‐element and plane waves discontinuous Galerkin methods for time‐harmonic problems. International Journal for Numerical Methods in Engineering116, 487–503.
    [Google Scholar]
  16. HamiltonS.J. and HauptmannA.2017. Deep D‐bar: real time electrical impedance tomography imaging with deep neural networks. IEEE Transactions on Medical Imaging37, 2367–2377.
    [Google Scholar]
  17. HesthavenJ.S. and WarburtonT.2007. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer.
    [Google Scholar]
  18. JoutsensaariJ., OzonM., NieminenT., MikkonenS., LähivaaraT., DecesariS.et al. 2018. Identification of new particle formation events with deep learning. Atmospheric Chemistry and Physics18, 9597–9615.
    [Google Scholar]
  19. KaipioJ. and SomersaloE.2007. Statistical inverse problems: discretization, model reduction and inverse crimes. Journal of Computational and Applied Mathematics198, 493–504.
    [Google Scholar]
  20. KarahanH. and AyvazM.T.2008. Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks. Hydrogeology Journal16, 817–827.
    [Google Scholar]
  21. KarimpouliS., HassaniH., Nabi‐BidhendiM., KhoshdelH. and MalehmirA.2013. Application of probabilistic facies prediction and estimation of rock physics parameters in a carbonate reservoir from Iran. Journal of Geophysics and Engineering10, 015008.
    [Google Scholar]
  22. KäserM. and DumbserM.2006. An arbitrary high‐order discontinuous Galerkin method for elastic waves on unstructured meshes—I. The two‐dimensional isotropic case with external source terms. Geophysical Journal International166, 855–877.
    [Google Scholar]
  23. KingmaD.P. and BaJ.L.2015. Adam: a method for stochastic optimization. 3rd International Conference on Learning Representations. San Diego. United States of America. Also available in ArXiv e‐prints.
  24. KrizhevskyA., SutskeverI. and HintonG.2012. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, Vol. 25 (eds F.Pereira, C. J. C.Burges, L.Bottou and K. Q.Weinberger), pp. 1097–1105. Curran Associates, Inc.
    [Google Scholar]
  25. LähivaaraT., Dudley WardN.F., HuttunenT., KoponenJ. and KaipioJ.P.2014. Estimation of aquifer dimensions from passive seismic signals with approximate wave propagation models. Inverse Problems30, 015003.
    [Google Scholar]
  26. LähivaaraT., Dudley WardN.F., HuttunenT., RawlinsonZ. and KaipioJ.P.2015. Estimation of aquifer dimensions from passive seismic signals in the presence of material and source uncertainties. Geophysical Journal International200, 1662–1675.
    [Google Scholar]
  27. LähivaaraT. and HuttunenT.2010. A non‐uniform basis order for the discontinuous Galerkin method of the 3D dissipative wave equation with perfectly matched layer. Journal of Computational Physics229, 5144–5160.
    [Google Scholar]
  28. LähivaaraT. and HuttunenT.2011. A non‐uniform basis order for the discontinuous Galerkin method of the acoustic and elastic wave equations. Applied Numerical Mathematics61, 473–486.
    [Google Scholar]
  29. LähivaaraT., KärkkäinenL., HuttunenJ.M. and HesthavenJ.S.2018. Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography. The Journal of the Acoustical Society of America143, 1148–1158.
    [Google Scholar]
  30. LähivaaraT., PasanenA., MalehmirA. and KaipioJ.P.2017. Full‐waveform seismic inversion for estimating aquifer dimensions and hydrologic parameters. 23rd European Meeting of Environmental and Engineering Geophysics, Malmö, Sweden. Eage.
  31. LeCunY., BengioY. and HintonG.2015. Deep learning. Nature521, 436–444.
    [Google Scholar]
  32. LeCunY., BottouL., BengioY. and HaffnerP.1998. Gradient‐based learning applied to document recognition. Proceedings of the IEEE86, 2278–2324.
    [Google Scholar]
  33. MariesG., AhokangasE., MäkinenJ., PasanenA. and MalehmirA.2017. Interlobate esker architecture and related hydrogeological features derived from a combination of high‐resolution reflection seismics and refraction tomography, Virttaankangas, southwest Finland. Hydrogeology Journal25, 829–845.
    [Google Scholar]
  34. ModaveA., St‐CyrA. and WarburtonT.2016. GPU performance analysis of a nodal discontinuous Galerkin method for acoustic and elastic models. Computers & Geosciences91, 64–76.
    [Google Scholar]
  35. MohantyS., JhaM.K., KumarA. and SudheerK.P.2010. Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. Water Resources Management24, 1845–1865.
    [Google Scholar]
  36. MorencyC. and TrompJ.2008. Spectral‐element simulations of wave propagation in porous media. Geophysical Journal International175, 301–345.
    [Google Scholar]
  37. RasmussenC. and WilliamsC.2006. Gaussian Processes for Machine Learning. The MIT Press.
    [Google Scholar]
  38. ShuklaK., HesthavenJ., CarcioneJ., YeR., de la PuenteJ. and JaiswalP.2019. A nodal discontinuous Galerkin finite element method for the poroelastic wave equation. Computational Geosciences2, 1–21.
    [Google Scholar]
  39. WilcoxL.C., StadlerG., BursteddeC. and GhattasO.2010. A high‐order discontinuous Galerkin method for wave propagation through coupled elastic‐acoustic media. Journal of Computational Physics229, 9373–9396.
    [Google Scholar]
  40. ZhuangM., ZhanQ., ZhouJ., LiuN. and LiuQ.H.2018. Incorporating full attenuation mechanisms of poroelastic media for realistic subsurface sensing. IEEE Transactions on Geoscience and Remote Sensing57, 2087–2096.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12831
Loading
/content/journals/10.1111/1365-2478.12831
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Inverse problem; Modelling; Monitoring; Wave

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error