1887
Volume 68, Issue 2
  • E-ISSN: 1365-2478
PDF

Abstract

ABSTRACT

At the geothermal test site near Groß Schönebeck (NE German Basin), a new 3D seismic reflection survey was conducted to study geothermal target layers at around 4 km depth and 150°C. We present a workflow for seismic facies classification and modelling which is applied to a prospective sandstone horizon within the Rotliegend formation. Signal attributes are calculated along the horizon using the continuous Morlet wavelet transform. We use a short mother wavelet to allow for the temporal resolution of the relatively short reflection signals to be analysed. Time‐frequency domain data patterns form the input of a neural network clustering using self‐organizing maps. Neural model patterns are adopted during iterative learning to simulate the information inherent in the input data. After training we determine a gradient function across the self‐organizing maps and apply an image processing technique called watershed segmentation. The result is a pattern clustering based on similarities in wavelet transform characteristics. Three different types of wavelet transform patterns were found for the sandstone horizon. We apply seismic waveform modelling to improve the understanding of the classification results. The modelling tests indicate that thickness variations have a much stronger influence on the wavelet transform response of the sandstone horizon compared with reasonable variations of seismic attenuation. In our interpretation, the assumed thickness variations could be a result of variable paleo‐topography during deposition of predominantly fluvial sediments. A distinct seismic facies distribution is interpreted as a system of thicker paleo‐channels deposited within a deepened landscape. The results provide constraints for the ongoing development of the geothermal test site.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12853
2019-09-10
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/gpr/68/2/gpr12853.html?itemId=/content/journals/10.1111/1365-2478.12853&mimeType=html&fmt=ahah

References

  1. AleardiM., MazzottiA., TognarelliA., CiuffiS. and CasiniM.2015. Seismic and well log characterization of fractures for geothermal exploration in hard rocks. Geophysical Journal International203, 270–283.
    [Google Scholar]
  2. BaltruschS. and KlarnerS.1993. Rotliegend‐Gräben in NE Brandenburg. Zeitschrift der Deutschen Geologischen Gesellschaft144, 173–186.
    [Google Scholar]
  3. BarnesA.E.2007. Redundant and useless seismic attributes. Geophysics72, P33–P38.
    [Google Scholar]
  4. BauerK., KulenkampffJ., HenningesJ. and SpangenbergE.2015. Lithological control on gas hydrate saturation as revealed by signal classification of NMR logging data. Journal of Geophysical Research Solid Earth120, 6001–6017.
    [Google Scholar]
  5. BauerK., MoeckI., NordenB., SchulzeA., WeberM. and WirthH.2010. Tomographic P‐wave velocity and vertical gradient structure across the geothermal site Groß Schönebeck (NE German Basin): relationship to lithology, salt tectonics, and thermal regime. Journal of Geophysical Research115, B08312.
    [Google Scholar]
  6. BauerK., MuñozG. and MoeckI.2012. Pattern recognition and lithological interpretation of collocated seismic and magnetotelluric models using self‐organizing maps. Geophysical Journal International189, 984–998.
    [Google Scholar]
  7. BauerK., PrattR.G., HaberlandC. and WeberM.2008. Neural network analysis of crosshole tomographic images: the seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada). Geophysical Research Letters35, L19306.
    [Google Scholar]
  8. BlöcherG., ReinschT., HenningesJ., MilschH., RegenspurgS., KummerowJ.et al. 2016. Hydraulic history and current state of the deep geothermal reservoir Groß Schönebeck. Geothermics63, 27–43.
    [Google Scholar]
  9. BohlenT.2002. Parallel 3‐D viscoelastic finite difference seismic modelling. Computers and Geosciences28, 887–899.
    [Google Scholar]
  10. CastagnaJ.P., SunS. and SiegfriedR.W.2003. Instantaneous spectral analysis: detection of low‐frequency shadows associated with hydrocarbons. The Leading Edge22, 120–127.
    [Google Scholar]
  11. ChakrabortyA. and OkayaD.1995. Frequency time decomposition of seismic data using wavelet based methods. Geophysics60, 1906–1916.
    [Google Scholar]
  12. ChopraS. and MarfurtK.J.2005. Seismic attributes – a historical perspective. Geophysics70, 3SO–28SO.
    [Google Scholar]
  13. ColéouT., PouponM. and AzbelK.2003. Unsupervised seismic facies classification: a review and comparison of techniques and implementation. Leading Edge22, 942–953.
    [Google Scholar]
  14. de MatosM.C., OsorioP.L.M. and JohannP.R.S.2007. Unsupervised seismic facies analysis using wavelet transform and self‐organizing maps. Geophysics72, P9‐P21.
    [Google Scholar]
  15. FrybergerS.G., KnightR., HernC., MoscarielloA. and KabelS.2011. Rotliegend facies, sedimentary provinces, and stratigraphy, Southern Permian Basin UK and The Netherlands: a review with new observations. In: The Rotliegend of the Netherlands, vol. 98 (eds J.Grötsch and R.Gaupp), pp. 51–88. SEPM, Special Publications.
    [Google Scholar]
  16. GardnerG.H.F., GardnerL.W. and GregoryA.R.1974. Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics39, 770–780.
    [Google Scholar]
  17. GastR.E., DusarM., BreitkreuzC., GauppR., SchneiderJ.W., StemmerikL.et al. 2010. Rotliegend. In: Petroleum Geological Atlas of the Southern Permian Basin Area (eds J.C.Doornenbal and A.G.Stevenson), pp. 101–121. Houten, The Netherlands:EAGE Publications b.v.
    [Google Scholar]
  18. GastR., PasternakG., PiskeJ. and RaschH.J.1998. Das rotliegend im nordostdeutschen raum: Regionale Übersicht, Stratigraphie, Fazies und Diagenese. Geologisches Jahrbuch A149, 59–79.
    [Google Scholar]
  19. GrossmannA. and MorletJ.1984. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis15, 723–736.
    [Google Scholar]
  20. HampsonD.P., SchuelkeJ.S. and QuireinJ.A.2001. Use of multiattribute transforms to predict log properties from seismic data. Geophysics66, 220–236.
    [Google Scholar]
  21. HenaresS., BloemsmaM.R., DonselaarM.E., MijnlieffH.F., RedjosentonoA.E., VeldkampH.G.et al. 2014. The role of detrital anhydrite in diagenesis of aeolian sandstones (Upper Rotliegend, The Netherlands): implications for reservoir‐quality prediction. Sedimentary Geology314, 60–74.
    [Google Scholar]
  22. HuangY., ZhengX., DuanY. and LuanY.2018. Robust time‐frequency analysis of seismic data using general linear chirplet transform. Geophysics83, V197–V214.
    [Google Scholar]
  23. HuengesE. and HurterS.2002. In‐situ Geothermielabor Groß Schönebeck 2000/2001: Bohrarbeiten, Bohrlochmessungen, Hydraulik, Formationsfluide, Tonminerale. Scientific Technical Report STR2/14, Geothermie Report 02‐1, GFZ Potsdam, 190 p.
  24. KazemeiniS.H., JuhlinC., Zinck‐JørgensenK. and NordenB.2009. Application of the continuous wavelet transform on seismic data for mapping of channel deposits and gas detection at the CO2Sink site, Ketzin, Germany. Geophysical Prospecting57, 111–123.
    [Google Scholar]
  25. KohonenT.1982. Self‐organized formation of topologically correct feature maps. Biological Cybernetics43, 59–69.
    [Google Scholar]
  26. KohonenT.1990. The self‐organizing map. Proceedings of the IEEE78, 1464–1480.
    [Google Scholar]
  27. KohonenT.2001. Self‐Organizing Maps, 3rd edn. Vol. 30. Springer Series in Information Sciences. Berlin, Heidelberg: Springer.
    [Google Scholar]
  28. KrawczykC.M., StillerM., BauerK., NordenB., HenningesJ., IvanovaA.et al. 2019. 3‐D seismic exploration across the deep geothermal research platform Groß Schönebeck north of Berlin/Germany. Geothermal Energy7, 1–18.
    [Google Scholar]
  29. KumarP. and Foufoula‐GeorgiouE.1997. Wavelet analysis for geophysical applications. Reviews of Geophysics35, 385–412.
    [Google Scholar]
  30. LegarthB.A., HuengesE. and ZimmermannG.2005. Hydraulic fracturing in a sedimentary geothermal reservoir: results and implications. International Journal of Rock Mechanics and Mining Sciences42, 1028–1041.
    [Google Scholar]
  31. MarfurtK.J., KirlinR.L., FarmerS.C. and BahorichM.S.1998. 3‐D seismic attributes using a semblance‐based coherency algorithm. Geophysics63, 1150–1165.
    [Google Scholar]
  32. McCannT.1998. The Rotliegend of the NE German Basin: background and prospectivity. Petroleum Geoscience4, 17–27.
    [Google Scholar]
  33. MoeckI., SchandelmeierH. and HollH.G.2009. The stress regime in a Rotliegend reservoir in the Northeast German Basin. International Journal of Earth Sciences98, 1643–1654.
    [Google Scholar]
  34. Molino‐Minero‐ReE., Rubio‐AcostaE., Benítez‐PérezH., Brandi‐PurataJ.M., Pérez‐QuezadasN.I. and García‐NocettiD.F.2018. A method for classifying pre‐stack seismic data based on amplitude‐frequency attributes and self‐organizing maps. Geophysical Prospecting66, 673–687.
    [Google Scholar]
  35. MuñozG., BauerK., MoeckI., SchulzeA. and RitterO.2010. Exploring the Groß Schönebeck (Germany) geothermal site using a statistical joint interpretation of magnetotelluric and seismic tomography models. Geothermics39, 35–45.
    [Google Scholar]
  36. ProkophA. and BarthelmesF.1996. Detection of nonstationarities in geological time series: wavelet transform of chaotic and cyclic sequences. Computers and Geosciences22, 1097–1108.
    [Google Scholar]
  37. PussakM., BauerK., StillerM. and BujakowskiW.2014. Improved 3D seismic attribute mapping by CRS stacking instead of NMO stacking: application to a geothermal reservoir in the Polish Basin. Journal of Applied Geophysics103, 186–198.
    [Google Scholar]
  38. RussellB., HampsonD., SchuelkeJ. and QuireinJ.1997. Multiattribute seismic analysis. The Leading Edge16, 1439.
    [Google Scholar]
  39. SinhaS., RouthP.S., AnnoP.D. and CastagnaJ.P.2005. Spectral decomposition of seismic data with continuous‐wavelet transform. Geophysics70, P19–P25.
    [Google Scholar]
  40. StillerM., KrawczykC.M., BauerK., HenningesJ., NordenB., HuengesE.et al. 2018. 3D‐Seismik am Geothermiestandort Groß Schönebeck. bbr – Fachmagazin für Brunnen‐ und Leitungsbau1/2018, 84–91.
    [Google Scholar]
  41. TanerM.T., KoehlerF. and SheriffR.E.1979. Complex seismic trace analysis. Geophysics44, 1041–1063.
    [Google Scholar]
  42. ToksözM.N., JohnstonD.H. and TimurA.1979. Attenuation of seismic waves in dry and saturated rocks: i. Laboratory measurements. Geophysics44, 681–690.
    [Google Scholar]
  43. TrappeH. and HellmichC.2000. Using neural networks to predict porosity thickness from 3D seismic data. First Break18, 377–384.
    [Google Scholar]
  44. TrautweinU. and HuengesE.2005. Poroelastic behaviour of physical properties in Rotliegend sandstones under uniaxial strain. International Journal of Rock Mechanics and Mining Sciences42, 924–932.
    [Google Scholar]
  45. van WeesJ.D., StephensonR.A., ZieglerP.A., BayerU., McCannT., DadlezR.et al. 2000. On the origin of the Southern Permian Basin, Central Europe. Marine and Petroleum Geology17, 43–59.
    [Google Scholar]
  46. von HartmannH., BunessH., KrawczykC.M. and SchulzR.2012. 3‐D seismic analysis of a carbonate platform in the Molasse Basin – reef distribution and internal separation with seismic attributes. Tectonophysics572–573, 16–25.
    [Google Scholar]
  47. WuL. and CastagnaJ.2017. S‐transform and Fourier transform frequency spectra of broadband seismic signals. Geophysics82, O71–O81.
    [Google Scholar]
  48. YeY., ZhangB., NiuC., QiJ. and ZhouH.2019. The thickness imaging of channels using multiple‐frequency components analysis. Interpretation7, B1–B8.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12853
Loading
/content/journals/10.1111/1365-2478.12853
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Full waveform; Interpretation; Reservoir geophysics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error