1887
Volume 68 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In 2017, the Metal Earth multi‐disciplinary exploration project acquired a total of 921 km of regional deep seismic reflection profiles and 184 km of high‐resolution seismic reflection profiles in the Abitibi and Wabigoon greenstone belts of the Superior province of Canada. The Abitibi belt hosts several world‐class mineral deposits, whereas the Wabigoon has sparse economic mineral deposits. Two high‐resolution surveys in the Swayze area, a poorly endowed part of the western Abitibi greenstone belt, served as pioneer surveys with which to better understand subsurface geology and design a strategy to process other surveys in the near future. Swayze seismic data were acquired with crooked survey geometries along roads. Designing an effective seismic processing flow to address these geometries and complex geology required straight common midpoint lines along which both two‐dimensional prestack dip‐moveout correction and poststack migration processing were applied. The resulting seismic sections revealed steeply dipping and subhorizontal reflections; some correlate with folded surface rocks. An interpreted fault/deformation zone imaged in Swayze north would be a target for metal endowment if it extends the Porcupine–Destor structure. Because of the crooked line geometry of the surveys, two‐dimensional /three‐dimensional prestack time migration and swath three‐dimensional processing were tested. The prestack time migration algorithm confirmed reflections at the interpreted base of the Abitibi greenstone belt. The swath three‐dimensional images provided additional spatial details about the geometries of some reflections, but also had less resolution and did not detect many reflectors observed in two dimensions. Geological contacts between felsic, mafic and ultramafic greenstone rock layers are thought the main cause of reflectivity in the Swayze area.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12854
2019-08-09
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/gpr/68/1/gpr12854.html?itemId=/content/journals/10.1111/1365-2478.12854&mimeType=html&fmt=ahah

References

  1. AdamE., MilkereitB., MareschalM., BarnesA.E., HubertC. and SalisburyM.1992. The application of reflection seismology to the investigation of the geometry of near‐surface units and faults in the Blake River Group, Abitibi belt, Quebec. Canadian Journal of Earth Sciences29, 2038−2045.
    [Google Scholar]
  2. AdamE., MilkereitB., ArnoldG. and PineaultR.1996. Seismic response of the Bell Allard orebody, Matagami, Quebec. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies66, 634−637.
    [Google Scholar]
  3. AdamE., MilkereitB. and MareschalM.1998. Seismic reflection and borehole geophysical investigations in the Matagami mining camp. Canadian Journal of Earth Sciences35, 686−695.
    [Google Scholar]
  4. AdamE., PerronG., MilkereitB., WuJ., CalvertA.J. and SalisburyM.et al. 2000. A review of high‐resolution seismic profiling across the Sudbury, Selbaie, Noranda, and Matagami mining camps. Canadian. Journal of Earth Sciences37, 503−516.
    [Google Scholar]
  5. AdamE., PerronG., ArnoldG., MatthewsL. and MilkerietB.2003. 3D seismic imaging for VMS deposit exploration, Matagami, Quebec. In: Hardrock Seismic Exploration (eds. D.W.Eaton, B.Milkereit and M.H.Salisbury), pp. 229−246. Society of Exploration Geophysicists.
    [Google Scholar]
  6. AhmadiO., JuhlinC., MalehmirA. and MunckM., 2013. High‐resolution 2D seismic imaging and forward modeling of a polymetallic sulfide deposit at Garpenberg, central Sweden. Geophysics78, B339−B350.
    [Google Scholar]
  7. AyarzaP., JuhlinC., BrownD., BeckholmenM., KimbellG., PechningR.et al. 2000. Integrated geological and geophysical studies in the SG4 borehole area, Tagil Volcanic Arc, Middle Urals: location of seismic reflectors and source of the reflectivity. Journal of Geophysical Research105, 21333–21352.
    [Google Scholar]
  8. AyerJ., AmelinY., CorfuF., KamoS., KetchumJ.F., KwokK.et al. 2002. Evolution of the southern Abitibi greenstone belt based on U‐Pb geochronology: autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation. Precambrian Research115, 63–95.
    [Google Scholar]
  9. BarnesA.E., BellefleurG., LuddenJ.N. and MilkereitB.1995. Appraisal of the parameters of the lithoprobe Abitibi‐Grenville seismic reflection survey. Geoscience Canada21, 49–57.
    [Google Scholar]
  10. BellefleurG., CalvertA.J. and ChouteauM.C.1998. Crustal geometry of the Abitibi Subprovince, in light of three‐dimensional seismic reflector orientation. Canadian Journal of Earth Sciences35, 569−582.
    [Google Scholar]
  11. CalvertA.J. and LiY.1999. Seismic reflection imaging over a massive sulphide deposit at the Matagami mining camp, Quebec. Geophysics64, 24–32.
    [Google Scholar]
  12. CalvertA.J., PerronG. and LiY.2003. A comparison of 2D seismic lines shot over the Ansil and Bell Allard mines in the Abitibi Greenstone belt. In: Hardrock Seismic Exploration (eds D.Eaton, B.Milkereit and M.Salisbury), pp. 164–177. Society of Exploration Geophysicists.
    [Google Scholar]
  13. CheraghiS., MalehmirA. and BellefleurG.2012. 3D imaging challenges in steeply dipping mining structures: new lights on acquisition geometry and processing from the Brunswick No. 6 seismic data, Canada.Geophysics77, WC109−WC122.
    [Google Scholar]
  14. ClowesR.M., GreenA.G., YorathC.J., KanasewichE.R., WestG.F. and GarlandG.D.1984. LITHOPROBE — a national program for studying the third dimension of geology. Journal of the Canadian Society of Exploration Geophysicists20, 23–39.
    [Google Scholar]
  15. ClowesR.M.2010. Initiation, development, and benefits of Lithoprobe — shaping the direction of earth science research in Canada and beyond. Canadian Journal of Earth Sciences47, 291–314.
    [Google Scholar]
  16. DonovanJ.F.1965. Geology of Swayze and Dore townships, district of Sudbury, Ontario Department of Mines. Geological Report No. 33, 1–25.
    [Google Scholar]
  17. DurrheimR.J., NicolaysenL.O. and CornerB.1991, A deep seismic reflection profile across the Archean‐Proterozoic Witwatersrand Basin, South Africa. In: Continental Lithosphere: Deep Seismic Reflections, Vol. 22 (eds. R.Meissner, L.Brown, H.J.Dürbaum, W.Franke, K.Fuchs and F.Seifert), pp. 213–224. American Geophysical Union.
    [Google Scholar]
  18. EatonD.W., AdamE., MilkereitB., SalisburyM., RobertsB., WhiteD.et al. 2010. Enhancing base‐metal exploration with seismic imaging. Canadian Journal of Earth Sciences47, 741–760.
    [Google Scholar]
  19. GreenA.G., MilkereitB., MayrandL.J., LuddenJ.N., HubertC., JacksonS.L.et al. 1990. Deep structure of an Archean greenstone terrane. Nature344, 327–330.
    [Google Scholar]
  20. HedinP., AlmqvistB., BerthetT., JuhlinC., BuskeS., SimonH.et al. 2016. 3D reflection seismic imaging at the 2.5 km deep COSC‐1 scientific borehole, central Scandinavian caledonides. Tectonophysics689, 40–55.
    [Google Scholar]
  21. JacksonS.L., SutcliffeR.H., LuddenJ.N., HubertC., GreenA.G., MilkereitB.et al. 1990. Southern Abitibi greenstone belt: Archean crustal structure from seismic reflection profiles. Geology18, 1086–1090.
    [Google Scholar]
  22. JuhlinC.1995. Imaging of fracture zones in the Finnsjön area, central Sweden, using the seismic reflection method. Geophysics60, 66–75.
    [Google Scholar]
  23. JuhlinC., KashubinS., KnappJ., MakovskyV. and RybergT.1995. EUROPROBE seismic reflection profiling in the Urals. The ESRU project. EOS76, 193–198.
    [Google Scholar]
  24. JuhlinC. and StephensM.B.2006. Gently dipping fracture zones in Paleoproterozoic metagranite, Sweden: evidence from reflection seismic and cored borehole data, and implications for the disposal of nuclear waste. Journal of Geophysical Research111, B09302.
    [Google Scholar]
  25. JuhlinC., DehghannejadM., LundB., MalehmirA. and PrattG.2010. Reflection seismic imaging of the end‐glacial Pärvie fault system, northern Sweden. Applied Geophysics70, 307–316.
    [Google Scholar]
  26. KashubinA.S. and JuhlinC.2010. Mapping of crustal scale tectonic boundaries in the Ossa‐Morena Zone using reprocessed IBERSEIS reflection seismic data. Tectonophysics489, 139−158.
    [Google Scholar]
  27. KimJ., MoonW.M., PercivalJ.A. and WestG.F.1992. Seismic imaging of shallow reflectors in the eastern Kapuskasing structural zone, with correction of crossdip attitudes. Geophysical Research Letters19, 2035–2048.
    [Google Scholar]
  28. LarnerK.L., GibsonB., ChambersR. and WigginsR.A.1979. Simultaneous estimation of residual static and crossdip corrections. Geophysics44, 1175−1192.
    [Google Scholar]
  29. LundberE. and JuhlinC.2011. High resolution reflection seismic imaging of the Ullared deformation zone, southern Sweden. Precambrian Research190, 25−34.
    [Google Scholar]
  30. MalehmirA.P., Dahlin, LundbergE., JuhlinC., SjöströmH., and HögdahlK.2011. Reflection seismic investigations in the Dannemora area, central Sweden: insights into the geometry of polyphase deformation zones and magnetite‐skarn deposits. Journal of Geophysical Research116, B11307.
    [Google Scholar]
  31. MalehmirA., DurrheimR., BellefleurG., UrosevicM., JuhlinC., WhiteD.et al. 2012, Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future. Geophysics77, WC173–WC190.
    [Google Scholar]
  32. MalehmirA., TryggvasonA., WijnsC., KoivistoE., LindqvistT., SkyttäP.et al. 2018. Why 3D seismic data are an asset for exploration and mine planning? Velocity tomography of weakness zones in the Kevitsa Ni‐Cu‐PGE mine, northern Finland. Geophysics83, B33–B46.
    [Google Scholar]
  33. MilkereitB., GreenA. and the Sudbury Working Group , 1992a. Deep geometry of the Sudbury structure from seismic reflection profiling. Geology20, 807–811.
    [Google Scholar]
  34. MilkereitB., ReedL. and Cinq‐MarsA.1992b. High frequency reflection seismic profiling at Les Mines Selbaie, Quebec. Current Research, Part E. Geological Survey of Canada, Paper 92‐1E, 217–224.
    [Google Scholar]
  35. MilkereitB. and EatonD.1998. Imaging and interpreting the shallow crust. Tectonophysics286, 5–18.
    [Google Scholar]
  36. MilkereitB., EatonD.W., WuJ., PerronG., SalisburyM.H., BerrerE.et al. 1996. Seismic imaging of massive sulphide deposits: part II. Reflection seismic profiling. Economic Geology91, 829–834.
    [Google Scholar]
  37. NaghizadehM., SnyderD., CheraghiS., FosterS., CilensekS., FeloreaniE.et al. 2019. Acquisition and processing of wider bandwidth seismic data in crystalline crust: progress with the metal earth project. Minerals9, 145.
    [Google Scholar]
  38. NedimovicM.R. and WestG.F.2003a. Crooked‐line 2D seismic reflection imaging in crystalline terrains: part 1, data processing. Geophysics68, 274−285.
    [Google Scholar]
  39. NedimovicM.R. and WestG.F.2003b. Crooked‐line 2D seismic reflection imaging in crystalline terrains: part 2, migration. Geophysics68, 286−296.
    [Google Scholar]
  40. OdgersA.T.R., HindsR.C. and von GruenewaldtG.1993. Interpretation of a seismic reflection survey across the southern Bushveld Complex. South African Journal of Geology96, 205–212.
    [Google Scholar]
  41. PerronG., MilkereitB., ReedL.E., SalisburyM., AdamE. and WuJ., 1997. Integrated seismic reflection and borehole geophysical studies at Les Mines Selbaie, Quebec. CIM Bulletin90, 75–82.
    [Google Scholar]
  42. PerronG. and CalvertA.J.1998. Shallow, high‐resolution seismic imaging at the Ansil mining camp in the Abitibi greenstone belt. Geophysics63, 379–391.
    [Google Scholar]
  43. RonenJ. and ClaerboutJ.F.1985. Surface‐consistent residual statics estimation by stack‐power maximization. Geophysics50, 2759–2797.
    [Google Scholar]
  44. Rodriguez‐TablanteJ., TryggvasonA., MalehmirA., JuhlinC. and PalmH.2007. Cross‐profile acquisition and cross‐dip analysis for extracting 3D information from 2D surveys, a case study from the western Skellefte District, northern Sweden. Journal of Applied Geophysics63, 1–12.
    [Google Scholar]
  45. RuskeyF.1981. High resolution seismic methods for hard rock mining. In: Premining Investigations for Hard Rock Mines. Proceedings U.S. Bureau of Mines Technology Transfer Seminar 4–28.
  46. SalisburyM.H., HarveyC.W. and MatthewsL.2003. The acoustic properties of ores and host rocks in hradrock terranes. In: Hard Rock Seismic Exploration (eds D.W.Eaton, B.Milkereit and M.H.Salisbury), pp. 9–19. Society of Exploration Geophysicists.
    [Google Scholar]
  47. SchmelzbachC., JuhlinC., CarbonellR. and SimancasJ.F.2007. Prestack and poststack migration of crooked‐line seismic reflection data: a case study from the South Portuguese Zone fold belt, southwestern Iberia. Geophysics72, B9–B18.
    [Google Scholar]
  48. SnyderD.B., BleekerW., ReedL.E., AyerJ.A., HouleM.G. and BatemanR., 2008. Tectonic and metallogenic implications of regional seismic profiles in the Timmins mining camp. Economic Geology103, 1135–1150.
    [Google Scholar]
  49. van BreemenO., HeatherK.B. and AyerJ.2006. U‐Pb geochronology of the Neoarchean Swayze sector of the southern Abitibi greenstone belt. In Geological Survey of Canada Current Research 2006‐F1, 1–32.
  50. VerpaelstP., PeloquinA.S., AdamE., BarnesA.E., LuddenJ.N., DionD.J.et al. 1995. Seismic reflection profiles across the mine series in the Noranda camp of the Abitibi belt, eastern Canada. Canadian Journal of Earth Sciences32, 167–176.
    [Google Scholar]
  51. VermeerG.J.O.1998. 3D symmetric sampling. Geophysics63, 1629–1647.
    [Google Scholar]
  52. WestG.F. and WangW.1992. Swath 3D processing of KSZ seismic reflection data recorded on crooked lines. In: Proceedings of the International Workshop on Seismic Profiling of the Continental Crust, September 1992, Banff, Alta.
  53. WhiteD.J., SecordD. and MalinowskiM.2012. 3D seismic imaging of volcanogenic massive sulphide deposits on the Flin Flon mining camp, Canada: part 1 – seismic results. Geophysics77, WC47–WC58.
    [Google Scholar]
  54. WuJ.1996. Potential pitfalls of crooked‐line seismic reflection surveys. Geophysics61, 277–281.
    [Google Scholar]
  55. WuJ., MilkereitB. and BoernerD.E.1995. Seismic imaging of the enigmatic Sudbury structure. Journal of Geophysical Research100, 4117–4130.
    [Google Scholar]
  56. YilmazÖ.2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12854
Loading
/content/journals/10.1111/1365-2478.12854
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Data processing; Imaging; Interpretation; Seismic; Swayze greenstone belt

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error