1887
Volume 68 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In mineral exploration, new methods to improve the delineation of ore deposits at depth are in demand. For this purpose, increasing the signal‐to‐noise ratio through suitable data processing is an important requirement. Seismic reflection methods have proven to be useful to image mineral deposits. However, in most hard rock environments, surface waves constitute the most undesirable source‐generated or ambient noise in the data that, especially given their typical broadband nature, often mask the events of interest like body‐wave reflections and diffractions. In this study, we show the efficacy of a two‐step procedure to suppress surface waves in an active‐source reflection seismic dataset acquired in the Ludvika mining area of Sweden. First, we use seismic interferometry to estimate the surface‐wave energy between receivers, given that they are the most energetic arrivals in the dataset. Second, we adaptively subtract the retrieved surface waves from the original shot gathers, checking the quality of the unveiled reflections. We see that several reflections, judged to be from the mineralization zone, are enhanced and better visualized after this two‐step procedure. Our comparison with results from frequency‐wavenumber filtering verifies the effectiveness of our scheme, since the presence of linear artefacts is reduced. The results are encouraging, as they open up new possibilities for denoising hard rock seismic data and, in particular, for imaging of deep mineral deposits using seismic reflections. This approach is purely data driven and does not require significant judgment on the dip and frequency content of present surface waves, which often vary from place to place.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12890
2019-11-14
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/gpr/68/1/gpr12890.html?itemId=/content/journals/10.1111/1365-2478.12890&mimeType=html&fmt=ahah

References

  1. BoullengerB. and DraganovD.2016. Interferometric identification of surface‐related multiples. Geophysics81, Q41‐Q52.
    [Google Scholar]
  2. BuskeS., BellefleurG. and MalehmirA.2015. Introduction to special issue on “hard rock seismic imaging”. Geophysical Prospecting63, 751–753.
    [Google Scholar]
  3. DongS., HeR. and SchusterG.2006. Interferometric prediction and least squares subtraction of surface waves. 76th Annual International Meeting, SEG, Expanded Abstracts, 2783–2786.
  4. DraganovD., GhoseR., HellerK. and RuigrokE.2013. Monitoring of changes in velocity and Q in reservoirs using non‐physical arrivals in seismic interferometry. Geophysical Journal International192, 699–709.
    [Google Scholar]
  5. DraganovD., GhoseR., RuigrokE., ThorbeckeJ. and WapenaarK.2010. Seismic interferometry, intrinsic losses and Q‐estimation. Geophysical Prospecting58, 361–373.
    [Google Scholar]
  6. DraganovD., HellerK. and GhoseR.2012. Monitoring CO2 storage using ghost reflections retrieved from seismic interferometry. International Journal of Greenhouse Gas Control11, S35–S46.
    [Google Scholar]
  7. EatonD.W., MilkereitB. and SalisburyM.2003. Seismic methods for deep mineral exploration: mature technologies adapted to new targets. The Leading Edge22, 580–585.
    [Google Scholar]
  8. GuittonA. and VerschuurD.J.2004. Adaptive subtraction of multiples using the L1‐norm. Geophysical Prospecting52, 27–38.
    [Google Scholar]
  9. HallidayD. and CurtisA.2008. Seismic interferometry, surface waves and source distribution. Geophysical Journal International175, 1067–1087.
    [Google Scholar]
  10. HallidayD., CurtisA., RobertssonJ. and van ManenD.2007. Interferometric surface‐wave isolation and removal. Geophysics72, A69–A73.
    [Google Scholar]
  11. HallidayD.F., CurtisA., VermeerP., StrobbiaC., GlushchenkoA., van ManenD.J., et al. 2010. Interferometric ground‐roll removal: attenuation of scattered surface waves in single‐sensor data. Geophysics75, SA15–SA25.
    [Google Scholar]
  12. JonssonE., TrollV.R., HögdahlK., HarrisC., WeisF., NilssonK.P., et al. 2013. Magmatic origin of giant ‘Kiruna‐type’ apatite‐iron‐oxide ores in central Sweden. Scientific Reports3, 1644.
    [Google Scholar]
  13. KimmanW.P. and TrampertJ.2010. Approximations in seismic interferometry and their effects on surface waves. Geophysical Journal International182, 461–476.
    [Google Scholar]
  14. KingS. and CurtisA.2012. Suppressing nonphysical reflections in Green's function estimates using source–receiver interferometry. Geophysics77, Q15–Q25.
    [Google Scholar]
  15. KoivistoE., MalehmirA., HeikkinenP., HeinonenS. and KukkonenI.2012. 2D reflection seismic investigations in the Kevitsa Ni‐Cu‐PGE deposit, northern Finland. Geophysics77, WC149–WC162.
    [Google Scholar]
  16. KonstantakiL., DraganovD., GhoseR. and HeimovaaraT.2015b. Seismic interferometry as a tool for improved imaging of the heterogeneities in the body of a landfill. Journal of Applied Geophysics122, 28–39.
    [Google Scholar]
  17. KonstantakiL., GhoseR., DraganovD., DiaferiaG. and HeimovaaraT.2015a. Characterization of a heterogeneous landfill using seismic and electrical resistivity data. Geophysics80, EN13–EN25.
    [Google Scholar]
  18. LiuJ., DraganovD. and GhoseR.2018. Seismic interferometry facilitating the imaging of shallow shear‐wave reflections hidden beneath surface waves. Near Surface Geophysics16, 372–382.
    [Google Scholar]
  19. LöerK., MelesG., CurtisA. and VasconcelosI.2013. Diffracted and pseudo‐physical waves from spatially‐limited arrays using source‐receiver interferometry (SRI). Geophysical Journal International196, 1043–1059.
    [Google Scholar]
  20. MagnussonN.H.1970. The origin of the iron ores in central Sweden and the history of their alterations. P. 1, Sveriges geologiska undersökning. Serie C, Avhandlingar och uppsatser. Stockholm.
  21. MalehmirA., DurrheimR., BellefleurG., UrosevicM., JuhlinC., WhiteD.J., et al. 2012. Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future. Geophysics77, WC173–WC190.
    [Google Scholar]
  22. MalehmirA., HolmesP., GisseløP., SoccoL.V., CarvalhoJ., MarsdenP., et al. 2019. Smart Exploration: Innovative ways of exploring for critical raw materials of the EU. 81st EAGE Conference and Exhibition 2019, London, UK, Expanded Abstracts.
  23. MalehmirA., MariesG., BäckströmE., SchönM. and MarsdenP.2017. Developing cost‐effective seismic mineral exploration methods using a landstreamer and a drophammer. Scientific Reports7, 10325.
    [Google Scholar]
  24. MalinowskiM., SchetselaarE. and WhiteD.2012. 3D seismic imaging in the Flin Flon VMS mining camp. Part II: forward modeling. Geophysics77, WC81–WC93.
    [Google Scholar]
  25. ManziM.S.D., GibsonM.A.S., HeinK.A.A., KingN. and DurrheimR.J.2012. Application of 3D seismic techniques to evaluate ore resources in the West Wits Line goldfield and portions of the West Rand goldfield, South Africa. Geophysics77, WC163–WC171.
    [Google Scholar]
  26. MariesG., MalehmirA., BäckströmE., SchönM. and MarsdenP.2017a. Downhole physical property logging for iron‐oxide exploration, rock quality, and mining: an example from central Sweden. Ore Geology Reviews90, 1–13.
    [Google Scholar]
  27. MariesG., MalehmirA., BäckströmE., SchönM. and MarsdenP.2017b. Reflection seismic imaging of iron‐oxide deposits—An example from Bergslagen mining district of Sweden. 23rd European Meeting of Environmental and Engineering Geophysics, Malmö, Sweden, Expanded Abstracts.
  28. MarkovicM., MariesG., MalehmirA., von KetelholdtJ., BäckströmE., SchönM., et al. 2020. Deep reflection seismic imaging of iron‐oxide deposits in the Ludvika mining area of central Sweden. Geophysical Prospecting68, 7–23.
    [Google Scholar]
  29. MikesellD., van WijkK., CalvertA. and HaneyM.2009. Virtual refraction: useful spurious energy in seismic interferometry. Geophysics74, A13–A17.
    [Google Scholar]
  30. PlaceJ. and MalehmirA.2016. Using supervirtual first arrivals in controlled‐source hardrock seismic imaging—well worth the effort. Geophysical Journal International206, 716–730.
    [Google Scholar]
  31. PlaceJ., MalehmirA., HögdahlK., JuhlinC. and NilssonK.P.2015. Seismic characterization of the Grängesberg iron deposit and its mining‐induced structures, central Sweden. Interpretation3, SY41–SY56.
    [Google Scholar]
  32. RootsE., CalvertA. and CravenJ.2017. Interferometric seismic imaging around the active Lalor mine in the Flin Flon greenstone belt, Canada. Tectonophysics718, 92–104.
    [Google Scholar]
  33. ShearerP.2009. Introduction to Seismology. Cambridge University Press.
    [Google Scholar]
  34. SniederR.2004. Extracting the Green's function from the correlation of coda waves: a derivation based on stationary phase. Physical Review E69, 46610.
    [Google Scholar]
  35. StephensM.2009. Synthesis of the bedrock geology in the Bergslagen region, Fennoscandian Shield, south‐central Sweden. Sveriges geologiska undersökning (SGU).
  36. StephensM., AhlM., BergmanT., LundströmI., PerssonL., RipaM., et al. 2000. Syntes av berggrundsgeologisk och geofysisk information, Bergslagen och omgivande områden, Regional berggrundsgeologisk undersökning. Sammanfattning av pågående undersökningar 1999. ed. Sveriges geologiska undersökning Rapporter och medde – landen 102.
  37. van DalenK.N., MikesellT.D., RuigrokE.N. and WapenaarK.2015. Retrieving surface waves from ambient seismic noise using seismic interferometry by multidimensional deconvolution. Journal of Geophysical Research: Solid Earth120, 944–961.
    [Google Scholar]
  38. van DalenK.N., WapenaarK. and HallidayD.F.2014. Surface wave retrieval in layered media using seismic interferometry by multidimensional deconvolution. Geophysical Journal International196, 230–242.
    [Google Scholar]
  39. VerschuurD.J., BerkhoutA.J. and WapenaarC.P.A.1992. Adaptive surface‐related multiple elimination. Geophysics57, 1166–1177.
    [Google Scholar]
  40. WapenaarK. and FokkemaJ.2006. Green's function representations for seismic interferometry. Geophysics71, SI33–SI46.
    [Google Scholar]
  41. WapenaarK., DraganovD. and RobertssonJ. O. A. Eds. 2008. Seismic Interferometry: History and Present Status. SEG Geophysics Reprint Series, Volume 26. SEG, Tulsa, OK.
    [Google Scholar]
  42. XueY., AokiN. and SchusterG.2009. Interferometric prediction and subtraction of surface waves with a nonlinear local filter. Geophysics74, SI1–SI8.
    [Google Scholar]
  43. YehuwalashetE. and MalehmirA.2018. Gravity and magnetic survey, modeling and interpretation in the Blötberget iron‐oxide mining area of central Sweden. SEG Technical Program Expanded Abstracts 2018: Society of Exploration Geophysicists, 1479–1483.
  44. YilmazÖ. 2001. Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data. SEG, Tulsa, OK.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12890
Loading
/content/journals/10.1111/1365-2478.12890
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Data processing; Ludvika mines; Seismic Interferometry; Seismics; Surface waves

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error