1887
Volume 68, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Based on the fact that the Hankel matrix representing clean seismic data is low rank, low‐rank approximation methods have been widely utilized for removing noise from seismic data. A common strategy for real seismic data is to perform the low‐rank approximations for small local windows where the events can be approximately viewed as linear. This raises a fundamental question of selecting an optimal rank that best captures the number of events for each local window. Gavish and Donoho proposed a method to select the rank when the noise is independent and identically distributed. Gaussian matrix by analysing the statistical performance of the singular values of the Gaussian matrices. However, such statistical performance is not available for noisy Hankel matrices. In this paper, we adopt the same strategy and propose a rule that computes the number of singular values exceed the median singular value by a multiplicative factor. We suggest a multiplicative factor of 3 based on simulations which mimic the theories underlying Gavish and Donoho in the independent and identically distributed Gaussian setting. The proposed optimal rank selection rule can be incorporated into the classical low‐rank approximation method and many other recently developed methods such as those by shrinking the singular values. The low‐rank approximation methods with optimally selected rank rule can automatically suppress most of the noise while preserving the main features of the seismic data in each window. Experiments on both synthetic and field seismic data demonstrate the superior performance of the proposed rank selection rule for seismic data denoising.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12899
2019-11-19
2024-04-20
Loading full text...

Full text loading...

References

  1. AbmaR. and ClaerboutJ.1995. Lateral prediction for noise attenuation by tx and fx techniques. Geophysics60, 1887–1896.
    [Google Scholar]
  2. AharchaouM., AndersonJ., HughesS. and BinghamJ.2017. Singular‐spectrum analysis via optimal shrinkage of singular values, SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 4950–4954.
  3. BekaraM. and Van der BaanM.2009. Random and coherent noise attenuation by empirical mode decomposition. Geophysics74, V89–V98.
    [Google Scholar]
  4. BoseA., SenA., et al. 2007. Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices. Electronic Communications in Probability12, 21–27.
    [Google Scholar]
  5. BrycW., DemboA. and JiangT.2006. Spectral measure of large random Hankel, Markov and Toeplitz matrices. The Annals of Probability34, 1–38.
    [Google Scholar]
  6. CadzowJ.A.1988. Signal enhancement—a composite property mapping algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing36, 49–62.
    [Google Scholar]
  7. CanalesL.L., et al. 1984. Random noise reduction. Presented at the SEG Annual Meeting, Society of Exploration Geophysicists.
  8. ChenK. and SacchiM.D.2014. Robust reduced‐rank filtering for erratic seismic noise attenuation. Geophysics80, V1–V11.
    [Google Scholar]
  9. ChenW., XieJ., ZuS., GanS. and ChenY.2017a. Multiple‐reflection noise attenuation using adaptive randomized‐order empirical mode decomposition. IEEE Geoscience and Remote Sensing Letters14, 18–22.
    [Google Scholar]
  10. ChenY.2015. Deblending using a space‐varying median filter. Exploration Geophysics46, 332–341.
    [Google Scholar]
  11. ChenY., BaiM. and ChenY.2019. Obtaining free USArray data by multi‐dimensional seismic reconstruction. Nature Communications10, 1–13.
    [Google Scholar]
  12. ChenY., ChenH., XiangK. and ChenX.2017b. Preserving the discontinuities in least‐squares reverse time migration of simultaneous‐source data. Geophysics82, S185–S196.
    [Google Scholar]
  13. ChenY., FomelS. and HuJ.2014. Iterative deblending of simultaneous‐source seismic data using seislet‐domain shaping regularization. Geophysics79, V179–V189.
    [Google Scholar]
  14. ChenY., HuangW., ZhangD. and ChenW.2016a. An open‐source matlab code package for improved rank‐reduction 3D seismic data denoising and reconstruction. Computers & Geosciences95, 59–66.
    [Google Scholar]
  15. ChenY. and MaJ.2014. Random noise attenuation by fx empirical‐mode decomposition predictive filtering. Geophysics79, V81–V91.
    [Google Scholar]
  16. ChenY., MaJ. and FomelS.2016b. Double‐sparsity dictionary for seismic noise attenuation. Geophysics81 (2), V17–V30.
    [Google Scholar]
  17. ChenY., ZhangD., JinZ., ChenX., ZuS., HuangW. and GanS.2016c. Simultaneous denoising and reconstruction of 5‐D seismic data via damped rank‐reduction method. Geophysical Journal International206, 1695–1717.
    [Google Scholar]
  18. ChenY., ZhouY., ChenW., ZuS., HuangW. and ZhangD.2017c. Empirical low‐rank approximation for seismic noise attenuation. IEEE Transactions Geoscience and Remote Sensing55, 4696–4711
    [Google Scholar]
  19. DonohoD.L. and JohnstoneJ.M.1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika81, 425–455.
    [Google Scholar]
  20. DuijndamA., SchonewilleM. and HindriksC.1999. Reconstruction of band‐limited signals, irregularly sampled along one spatial direction. Geophysics64, 524–538.
    [Google Scholar]
  21. DuncanG. and BeresfordG.1995. Median filter behaviour with seismic data. Geophysical Prospecting43, 329–345.
    [Google Scholar]
  22. EckartC. and YoungG.1936. The approximation of one matrix by another of lower rank. Psychometrika1, 211–218.
    [Google Scholar]
  23. GanS., WangS., ChenY. and ChenX.2016. Simultaneous‐source separation using iterative seislet‐frame thresholding. IEEE Geoscience and Remote Sensing Letters13, 197–201.
    [Google Scholar]
  24. GavishM. and DonohoD.L.2014. The optimal hard threshold for singular values is 4/3. IEEE Transactions on Information Theory60, 5040–5053.
    [Google Scholar]
  25. GülünayN.2000. Noncausal spatial prediction filtering for random noise reduction on 3‐D poststack data. Geophysics65, 1641–1653.
    [Google Scholar]
  26. GulunayN., et al. 1986. Fxdecon and complex wiener prediction filter. Presented at the SEG Annual Meeting, Society of Exploration Geophysicists.
  27. HanJ. and van der BaanM.2015. Microseismic and seismic denoising via ensemble empirical mode decomposition and adaptive thresholding. Geophysics80, KS69–KS80.
    [Google Scholar]
  28. HerrmannF.J. and HennenfentG.2008. Non‐parametric seismic data recovery with curvelet frames. Geophysical Journal International173, 233–248.
    [Google Scholar]
  29. HuangW., WangR., ChenY., LiH. and GanS.2016. Damped multichannel singular spectrum analysis for 3D random noise attenuation. Geophysics81, V261–V270.
    [Google Scholar]
  30. HuangW., WangR., GongX. and ChenY.2017a. Iterative deblending of simultaneous‐source seismic data with structuring median constraint. IEEE Geoscience and Remote Sensing Letters15, 58–62.
    [Google Scholar]
  31. HuangW., WangR., ZuS. and ChenY.2017b. Low‐frequency noise attenuation in seismic and microseismic data using mathematical morphological filtering. Geophysical Journal International211, 1296–1318.
    [Google Scholar]
  32. HuangW., WuR.‐S. and WangR.2018. Damped dreamlet representation for exploration seismic data interpolation and denoising. IEEE Transactions on Geoscience and Remote Sensing56, 3159–3172.
    [Google Scholar]
  33. HuoS., LuoY. and KelamisP.G.2012. Simultaneous sources separation via multidirectional vector‐median filtering. Geophysics77, V123–V131.
    [Google Scholar]
  34. HuoS., ZhuW. and ShiT.2017. Iterative dip‐steering median filter. Journal of Applied Geophysics144, 151–156.
    [Google Scholar]
  35. KongD., PengZ., FanH. and HeY.2016. Seismic random noise attenuation using directional total variation in the shearlet domain. Journal of Seismic Exploration25, 321–338.
    [Google Scholar]
  36. KopsinisY. and McLaughlinS.2009. Development of EMD‐based denoising methods inspired by wavelet thresholding. IEEE Transactions on Signal Processing57, 1351–1362.
    [Google Scholar]
  37. KreimerN. and SacchiM.D.2012. A tensor higher‐order singular value decomposition for prestack seismic data noise reduction and interpolation. Geophysics77, V113–V122.
    [Google Scholar]
  38. LeCunY., BengioY. and HintonG.2015. Deep learning. Nature521, 436.
    [Google Scholar]
  39. LiG., ZhuZ., WuX. and HouB.2018a. On joint optimization of sensing matrix and sparsifying dictionary for robust compressed sensing systems. Digital Signal Processing73, 62–71.
    [Google Scholar]
  40. LiY., ZhangY., HuangX., ZhuH. and MaJ.2018b. Large‐scale remote sensing image retrieval by deep hashing neural networks. IEEE Transactions on Geoscience and Remote Sensing56, 950–965.
    [Google Scholar]
  41. LiuC., LiuY., YangB., WangD. and SunJ.2006. A 2D multistage median filter to reduce random seismic noise. Geophysics71, V105–V110.
    [Google Scholar]
  42. LiuG., ChenX., DuJ. and WuK.2012. Random noise attenuation using f‐x regularized nonstationary autoregression. Geophysics77, V61–V69.
    [Google Scholar]
  43. LiuG., ChenX., LiJ., DuJ. and SongJ.2011. Seismic noise attenuation using nonstationary polynomial fitting. Applied Geophysics8, 18–26.
    [Google Scholar]
  44. LiuS., HuQ., LiP., ZhaoJ., WangC. and ZhuZ.2018. Speckle suppression based on sparse representation with non‐local priors. Remote Sensing10, 439.
    [Google Scholar]
  45. LiuS., LiuM., LiP., ZhaoJ., ZhuZ. and WangX.2017. SAR image denoising via sparse representation in shearlet domain based on continuous cycle spinning. IEEE Transactions on Geoscience and Remote Sensing55, 2985–2992.
    [Google Scholar]
  46. LiuW., CaoS. and ChenY.2016a. Seismic time–frequency analysis via empirical wavelet transform. IEEE Geoscience and Remote Sensing Letters13, 28–32.
    [Google Scholar]
  47. LiuW., CaoS., LiuY. and ChenY.2016b. Synchrosqueezing transform and its applications in seismic data analysis. Journal of Seismic Exploration25, 27–44.
    [Google Scholar]
  48. NadakuditiR.R.2014. Optshrink: an algorithm for improved low‐rank signal matrix denoising by optimal, data‐driven singular value shrinkage. IEEE Transactions on Information Theory60, 3002–3018.
    [Google Scholar]
  49. OropezaV. and SacchiM.2011. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics76, V25–V32.
    [Google Scholar]
  50. QiaoT., RenJ., WangZ., ZabalzaJ., SunM., ZhaoH., LiS., BenediktssonJ.A., DaiQ. and MarshallS.2017. Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis. IEEE Transactions on Geoscience and Remote Sensing55, 119–133.
    [Google Scholar]
  51. SunJ., FomelS., ZhuT. and HuJ.2016. Q‐compensated least‐squares reverse time migration using low‐rank one‐step wave extrapolation. Geophysics81, S271–S279.
    [Google Scholar]
  52. SunJ., ZhuT. and FomelS.2015. Viscoacoustic modeling and imaging using low‐rank approximation. Geophysics80, A103–A108.
    [Google Scholar]
  53. SunW. and WangH.2016. Water‐layer‐related demultiple method using constraints in the sparse, local tau‐p domain. Journal of Seismic Exploration25, 463–483.
    [Google Scholar]
  54. TradD.O., UlrychT.J. and SacchiM.D.2002. Accurate interpolation with high‐resolution time‐variant radon transforms. Geophysics67, 644–656.
    [Google Scholar]
  55. TrickettS.2008. F‐xy cadzow noise suppression, SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 2586–2590.
  56. TrickettS., BurroughsL., MiltonA., WaltonL. and DackR.2010. Rank‐reduction‐based trace interpolation, SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 3829–3833.
  57. VautardR. and GhilM.1989. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena35, 395–424.
    [Google Scholar]
  58. WangC., ZhuZ., GuH., WuX. and LiuS.2018. Hankel low‐rank approximation for seismic noise attenuation. IEEE Transactions Geoscience and Remote Sensing57, 561–573.
    [Google Scholar]
  59. WangW., GaoJ., LiK., MaK. and ZhangX.2009. Structure‐oriented Gaussian filter for seismic detail preserving smoothing. 2009 16th IEEE International Conference on Image Processing (ICIP), 601–604. IEEE.
  60. WuJ., WangR., ChenY., ZhangY., GanS. and ZhouC.2016. Multiples attenuation using shaping regularization with seislet domain sparsity constraint. Journal of Seismic Exploration25, 1–9.
    [Google Scholar]
  61. WuR.‐S., GengY. and WuB.2011. Physical wavelet defined on an observation plane and the dreamlet, SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 3835–3839.
  62. YangW., WangR., ChenY., WuJ., QuS., YuanJ. and GanS.2015. Application of spectral decomposition using regularized non‐stationary autoregression to random noise attenuation. Journal of Geophysics and Engineering12, 175.
    [Google Scholar]
  63. ZhuZ., LiG., DingJ., LiQ. and HeX.2018a. On collaborative compressive sensing systems: the framework, design and algorithm. SIAM Journal of Imaging Science11, 1717–1758.
    [Google Scholar]
  64. ZhuZ., LiQ., TangG. and WakinM.B.2018b. Global optimality in low‐rank matrix optimization. IEEE Transactions on Signal Processing66, 3614–3628.
    [Google Scholar]
  65. ZhuZ. and WakinM.B.2017. Approximating sampled sinusoids and multiband signals using multiband modulated DPSS dictionaries. Journal of Fourier Analysis and Application23, 1263–1310.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12899
Loading
/content/journals/10.1111/1365-2478.12899
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Noise; Signal processing

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error