1887
Volume 68 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In order to assess the feasibility and validity of surface‐wave tomography as a tool for mineral exploration, we present an active seismic three‐dimensional case study from the Siilinjärvi mine in Eastern Finland. The aim of the survey is to identify the formation carrying the mineralization in an area south of the main pit, which will be mined in the future. Before acquiring the data, we performed an accurate survey design to maximize data coverage and minimize the time for deployment and recollection of the equipment. We extract path‐averaged Rayleigh‐wave phase‐velocity dispersion curves by means of a two‐station method. We invert them using a computationally efficient tomographic code which does not require the computation of phase‐velocity maps and inverts directly for one‐dimensional S‐wave velocity models. The retrieved velocities are in good agreement with the data from a borehole in the vicinity, and the pseudo three–dimensional S‐wave velocity volume allows us to identify the geological contact between the formation hosting most of the mineralization and the surrounding rock. We conclude that the proposed method is a valid tool, given the small amount of equipment used and the acceptable amount of time required to process the data.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12903
2019-12-30
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/gpr/68/1/gpr12903.html?itemId=/content/journals/10.1111/1365-2478.12903&mimeType=html&fmt=ahah

References

  1. AbbissC.P.1981. Shear wave measurements of the elasticity of the ground. Geotechnique31, 91–104.
    [Google Scholar]
  2. AdamE., MilkereitB. and MareschalM.1998. Seismic reflection and borehole geophysical investigations in the Matagami mining camp. Canadian Journal of Earth Sciences35, 686–695.
    [Google Scholar]
  3. AiroM.L. and MertanenS.2008. Magnetic signatures related to orogenic gold mineralization, Central Lapland Greenstone Belt, Finland. Journal of Applied Geophysics64, 14–24.
    [Google Scholar]
  4. AstenM.2006. On bias and noise in passive seismic data from finite circular array data processed using SPAC methods. Geophysics71, V153–V162.
    [Google Scholar]
  5. BadalJ., ChenY., ChourakM. and StankiewiczJ.2013. S‐wave velocity images of the Dead Sea Basin provided by ambient seismic noise. Journal of Asian Earth Sciences75, 26–35.
    [Google Scholar]
  6. BensenG.D., RitzwollerM.H. and ShapiroN.M.2008. Broadband ambient noise surface wave tomography across the United States. Journal of Geophysical Research: Solid Earth113, B05306‐1–B05306‐21.
    [Google Scholar]
  7. BlochS. and HalesA.L.1968. New techniques for the determination of surface wave phase velocities. Bulletin of the Seismological Society of America58, 1021–1034.
    [Google Scholar]
  8. BoieroD.2009. Surface wave analysis for building shear wave velocity models. PhD thesis. Politecnico di Torino, Torino, Italy.
  9. BoieroD. and SoccoL.V.2010. Retrieving lateral variations from surface wave dispersion curves. Geophysical Prospecting58, 977–996.
    [Google Scholar]
  10. ChourakM., CorcheteV., BadalJ., GómezF. and SerónJ.2005. Shallow seismic velocity structure of the Betic Cordillera (southern Spain) from modelling of Rayleigh wave dispersion. Surveys in Geophysics26, 481–504.
    [Google Scholar]
  11. Da ColF., KarimpourM., PapadopoulouM., SoccoL.V., KoivistoE., SaloA., et al. 2019. Surface wave analysis from mineral exploration: a 3D example from Eastern Finland. 81st EAGE Conference and Exhibition, Extended Abstracts.
  12. DurrheimR.J. and MaccelariM.J.1991. Seismic exploration for precious metals in the hard rock environment. SEG Technical Program, Expanded Abstracts, 159–162.
  13. DziewonskiA., BlochS., and LandismanM.1969. A technique for the analysis of transient seismic signals. Bulletin of the seismological Society of America59, 427–444.
    [Google Scholar]
  14. EatonD.W., MilkereitB. and SalisburyM.2003. Seismic methods for deep mineral exploration: mature technologies adapted to new targets. The Leading Edge22, 580–585.
    [Google Scholar]
  15. HollisD., McBrideJ., GoodD., ArndtN., BrenguierF., and OlivierG.2018. Use of ambient noise surface wave tomography in mineral resource exploration and evaluation. SEG Technical Program, Expanded Abstracts, 1937–1940.
  16. KoivistoE., MalehmirA., HeikkinenP., HeinonenS. and KukkonenI.2012. 2D reflection seismic investigations at the Kevitsa Ni‐Cu‐PGE deposit, northern Finland. Geophysics77, WC149–WC162.
    [Google Scholar]
  17. KrestenP.1980. The Alnö complex: tectonics of dyke emplacement. Lithos13, 153–158.
    [Google Scholar]
  18. LanaroF. and FredrikssonA.2005. Rock Mechanics model‐summary of the primary data. Preliminary site description Forsmark area‐version 1.2 (No. SKB‐R–05‐83). Swedish Nuclear Fuel and Waste Management Co.
  19. LebedevS. and Van Der HilstR.D.2008. Global upper‐mantle tomography with the automated multimode inversion of surface and S‐wave forms. Geophysical Journal International173, 505–518.
    [Google Scholar]
  20. MalehmirA., HeinonenS., DehghannejadM., HeinoP., MariesG., KarellF., et al. 2017. Landstreamer seismics and physical property measurements in the Siilinjärvi open‐pit apatite (phosphate) mine, central Finland. Geophysics82, B29–B48.
    [Google Scholar]
  21. MariJ.L.1984. Estimation of static corrections for shear‐wave profiling using the dispersion properties of Love waves. Geophysics49, 1169–1179.
    [Google Scholar]
  22. MordretA., ShapiroN.M., SinghS., RouxP. and BarkvedO.I.2011. Low frequency passive seismic tomography using Valhall LoFS. Third EAGE Passive Seismic Workshop‐Actively Passive, Extended Abstracts.
  23. NakamuraY.1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Reports Railway Technical Research Institute30, 25–30.
    [Google Scholar]
  24. O'BrienH., HeilimoE. and HeinoP.2015. The Archean Siilinjärvi carbonatite complex. In: Mineral Deposits of Finland (eds W.Maier, H.O'Brien and R.Lahtinen), pp. 327–343. Elsevier.
    [Google Scholar]
  25. OrfanosC., LeontarakisK., LoisA., PolychronopoulouK. and MartakisN.2016. Automatic passive seismic data processing with no prior information: the contribution of surface wave tomography. First Break34, 75–84.
    [Google Scholar]
  26. PapadopoulouM., Da ColF., MiB., BäckströmE., MarsdenP., BrodicB., et al. 2019. Surface‐wave analysis for static corrections in mineral exploration: a case study from central Sweden.
  27. ParkC.B., MillerR.D. and XiaJ.1998. Imaging dispersion curves of surface waves on multi‐channel record. SEG Technical Program, Expanded Abstracts, 1377–1380.
  28. PicozziM., ParolaiS., BindiD. and StrolloA.2009. Characterization of shallow geology by high‐frequency seismic noise tomography. Geophysical Journal International176, 164–174.
    [Google Scholar]
  29. RitzwollerM.H. and LevshinA.L.1998. Eurasian surface wave tomography: group velocities. Journal of Geophysical Research: Solid Earth103, 4839–4878.
    [Google Scholar]
  30. ScheibA., MorrisP., MurdieR. and Delle PianeC.2016. A passive seismic approach to estimating the thickness of sedimentary cover on the Nullarbor Plain, Western Australia. Australian Journal of Earth Sciences63, 583–598.
    [Google Scholar]
  31. ShapiroN.M., CampilloM., StehlyL. and RitzwollerM.H.2005. High resolution surface wave tomography from ambient seismic noise, Science307, 1615–1618.
    [Google Scholar]
  32. SharmaH., MolnarS., HollisD. and McBrideJ.2018. Application of ambient‐noise analysis and velocity modeling in mineral exploration. SEG Technical Program, Expanded Abstracts, 3072–3076.
  33. SmithN.R.A., ReadingA.M., AstenM.W. and FunkC.W.2013. Constraining depth to basement for mineral exploration using microtremor: a demonstration study from remote inland Australia. Geophysics78, B227–B242.
    [Google Scholar]
  34. SoccoL.V., BoieroD., BergamoP., GarofaloF., YaoH., HilstR.D.V.D., et al. 2014. Surface wave tomography to retrieve near surface velocity models. SEG Technical Program, Expanded Abstracts, 2013–2018.
  35. SoccoL.V., BoieroD., FotiS., MaraschiniM., PiattiC., BergamoP., et al. 2010. Surface wave analysis for S‐wave static correction computation. SEG Technical Program, Expanded Abstracts, 1929–1933.
  36. SwobodaU., UchtmannS., LimbrockK., ElsenR., OrlowskyD., TelengaK., et al. 2013. Seismic and geoelectric investigation of historical mining structures‐a case study. Near Surface Geoscience 2013–19th EAGE European Meeting of Environmental and Engineering Geophysics.
  37. TarantolaA.2005. Inverse problem theory and methods for model parameter estimation, 1st edn. Society for Industrial and Applied Mathematics.
    [Google Scholar]
  38. TarantolaA. and ValetteB.1982. Generalized non‐linear inverse problems solved using the least squares criterion. Reviews of Geophysics and Space Physics20, 219–232.
    [Google Scholar]
  39. TichomirowaM., GroscheG., GötzeJ., BelyatskB.V., SavvaE.V., KellerJ., et al. 2006. The mineral isotope composition of two Precambrian carbonatite complexes from the Kola Alkaline Province–Alteration versus primary magmatic signatures. Lithos91, 229–249.
    [Google Scholar]
  40. Van Der LeeS. and FrederiksenA.2005. Surface wave tomography applied to the North American upper mantle. Seismic Earth: Array Analysis of Broadband Seismograms157, 67–80.
    [Google Scholar]
  41. YaoH., BegheinC. and Van Der HilstR.D.2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two‐station analysis‐II. Crustal and upper‐mantle structure. Geophysical Journal International173, 205–219.
    [Google Scholar]
  42. YaoH., Van Der HilstR.D. and De HoopM.V.2006. Surface‐wave array tomography in SE Tibet from ambient seismic noise and two‐station analysis—I. Phase velocity maps. Geophysical Journal International166, 732–744.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12903
Loading
/content/journals/10.1111/1365-2478.12903
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Mineral exploration; Surface waves; Tomography

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error