1887
Volume 68, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

An improved interpolation scheme is presented for 2.5‐dimensional marine controlled‐source electromagnetic forward modelling. For the marine controlled‐source electromagnetic method, due to the resistivity contrast between the seawater and seafloor sedimentary layers, it is difficult to compute the electromagnetic fields accurately at receivers, which are usually located at the seafloor. In this study, the 2.5‐dimensional controlled‐source electromagnetic responses are simulated by the staggered finite‐difference method. The secondary‐field approach is used to avoid the source singularities, and the one‐dimensional layered background model is used for calculating the primary fields excited by the source quasi‐analytically. The interpolation of electromagnetic fields at the cell nodes for the whole computational domain to the receiver locations is discussed in detail. Numerical tests indicate that the improved interpolation developed is more accurate for simulating the electromagnetic responses at receivers located at the seafloor, compared with the linear or rigorous interpolation.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12937
2020-02-11
2024-04-19
Loading full text...

Full text loading...

References

  1. AbubakarA., HabashyT.M., DruskinV.L., KnizhnermanL. and AlumbaughD.2008. 2.5D forward and inverse modeling for interpreting low‐frequency electromagnetic measurements. Geophysics73, F165–F177.
    [Google Scholar]
  2. AmestoyP.R., DuffI.S., L'ExcellentJ.‐Y., RobertY., RouetF.‐H. and UçarB.2012. On computing inverse entries of a sparse matrix in an out‐of‐core environment. SIAM Journal on Scientific Computing34, A1975–A1999.
    [Google Scholar]
  3. AndersonW.L.1983. Fourier cosine and sine transforms using lagged convolutions in double‐precision (subprograms DLAGF0/DLAGF1). Discussion paper, U.S. Geological Survey.
  4. AnsariS. and FarquharsonC.G.2014. 3D finite‐element forward modeling of electromagnetic data using vector and scalar potentials and unstructured grids. Geophysics79, E149–E165.
    [Google Scholar]
  5. AvdeevD.B.2005. Three‐dimensional electromagnetic modelling and inversion from theory to application. Surveys in Geophysics26, 767–799.
    [Google Scholar]
  6. BabaK. and SeamaN.2002. A new technique for the incorporation of seafloor topography in electromagnetic modelling. Geophysical Journal International150, 392–402.
    [Google Scholar]
  7. ChaveA.D. and CoxC.S.1982. Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans: 1. Forward problem and model study. Journal of Geophysical Research87, 5327–5338.
    [Google Scholar]
  8. CommerM. and NewmanG.A.2008. New advances in three‐dimensional controlled‐source electromagnetic inversion. Geophysical Journal International172, 513–535.
    [Google Scholar]
  9. ConstableS.2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics75, 75A67–75A81.
    [Google Scholar]
  10. ConstableS.2013. Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding, Geophysical Prospecting61, 505–532.
    [Google Scholar]
  11. ConstableS. and WeissC.J.2006. Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modeling, Geophysics71, G43–G51.
    [Google Scholar]
  12. de Groot‐Hedlin, C. 2006. Finite‐difference modeling of magnetotelluric fields: Error estimates for uniform and nonuniform grids. Geophysics71, G97–G106.
    [Google Scholar]
  13. EverettM.E. and EdwardsR.N.1993. Transient marine electromagnetics: the 2.5‐D forward problem. Geophysical Journal International113, 545–561.
    [Google Scholar]
  14. FlosadóttirÁ.H. and ConstableS.1996. Marine controlled‐source electromagnetic sounding: 1. Modeling and experimental design. Journal of Geophysical Research101, 5507–5517.
    [Google Scholar]
  15. HaberE. and AscherU.M.2001. Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients. SIAM Journal on Scientific Computing22, 1943–1961.
    [Google Scholar]
  16. HaberE., AscherU.M., AruliahD.A. and OldenburgD.W.2000. Fast simulation of 3D electromagnetic problems using potentials. Journal of Computational Physics163, 150–171.
    [Google Scholar]
  17. JaysavalP., ShantsevD.V., de la KethulledeR.S. and BrattelandT.2016. Fully anisotropic 3‐D EM modelling on a Lebedev grid with a multigrid pre‐conditioner. Geophysical Journal International207, 1554–1572.
    [Google Scholar]
  18. KeyK.2009. 1D inversion of multicomponent, multifrequency marine CSEM data: methodology and synthetic studies for resolving thin resistive layers, Geophysics74, F9–F20.
    [Google Scholar]
  19. KeyK.2011. Marine electromagnetic studies of seafloor resources and tectonics. Surveys in Geophysics33, 135–167.
    [Google Scholar]
  20. KeyK.2016. MARE2DEM: a 2‐D inversion code for controlled‐source electromagnetic and magnetotelluric data. Geophysical Journal International207, 571–588.
    [Google Scholar]
  21. KeyK. and OvallJ.2011. A parallel goal‐oriented adaptive finite element method for 2.5‐D electromagnetic modelling. Geophysical Journal International186, 137–154.
    [Google Scholar]
  22. LeeK.H. and MorrisonH.F.1985. A numerical solution for the electromagnetic scattering by a two‐dimensional inhomogeneity. Geophysics50, 466–472.
    [Google Scholar]
  23. LiG. and HanB.2017. Application of the perfectly matched layer in 2.5D marine controlled‐source electromagnetic modeling. Physics of the Earth and Planetary Interiors270, 157–167.
    [Google Scholar]
  24. LiG., LiY. and HanB.2017. Accurate Interpolation at receiver positions: a novel method for frequency‐domain marine CSEM finite‐difference modelling. Pure and Applied Geophysics174, 2143–2160.
    [Google Scholar]
  25. LiG., LiY., HanB. and LiuZ.2018. Application of the perfectly matched layer in 3‐D marine controlled‐source electromagnetic modelling. Geophysical Journal International212, 333–344.
    [Google Scholar]
  26. LiY. and ConstableS.2007. 2D marine controlled‐source electromagnetic modeling: Part 2 ‐ The effect of bathymetry. Geophysics72, WA63–WA71.
    [Google Scholar]
  27. LiY. and KeyK.2007. 2D marine controlled‐source electromagnetic modeling: Part 1 ‐ An adaptive finite‐element algorithm. Geophysics72, WA51–WA62.
    [Google Scholar]
  28. LiY. and LiG.2016. Electromagnetic field expressions in the wavenumber domain from both the horizontal and vertical electric dipoles. Journal of Geophysics and Engineering13, 505–515.
    [Google Scholar]
  29. LøsethL.O. and UrsinB.2007. Electromagnetic fields in planarly layered anisotropic media. Geophysical Journal International170, 44–80.
    [Google Scholar]
  30. MackieR.L., SmithJ.T. and MaddenT.R.1994. Three‐dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example. Radio Science29, 923–935.
    [Google Scholar]
  31. MitsuhataY.2000. 2‐D electromagnetic modeling by finite‐element method with a dipole source and topography. Geophysics65, 465–475.
    [Google Scholar]
  32. NewmanG.A. and AlumbaughD.L.1997. Three‐dimensional massively parallel electromagnetic inversion‐I. Theory. Geophysical Journal International128, 345–354.
    [Google Scholar]
  33. OldenburgD.W., HaberE. and ShekhtmanR.2013. Three dimensional inversion of multisource time domain electromagnetic data. Geophysics78, E47–E57.
    [Google Scholar]
  34. PuzyrevK.V., de la PuenteJ., HouzeauxG., VazquezM. and CelaJ.M.2013. A parallel finite‐element method for three‐dimensional controlled‐source electromagnetic forward modelling. Geophysical Journal International193, 678–693.
    [Google Scholar]
  35. SchwarzbachC. and HaberE.2013. Finite element based inversion for time‐harmonic electromagnetic problems. Geophysical Journal International193, 615–634.
    [Google Scholar]
  36. ShantsevD.V. and MaaøF.A.2015. Rigorous interpolation near tilted interfaces in 3‐D finite‐difference EM modelling. Geophysical Journal International200, 743–755.
    [Google Scholar]
  37. SmithJ.T.1996. Conservative modeling of 3‐D electromagnetic fields, Part I: Properties and error analysis. Geophysics61, 1308–1318.
    [Google Scholar]
  38. StoyerC.H. and GreenfieldR.J.1976. Numerical solutions of the response of a two‐dimensional earth to an oscillating magnetic dipole source. Geophysics41, 519–530.
    [Google Scholar]
  39. StreichR.2009. 3D finite‐difference frequency‐domain modeling of controlled‐source electromagnetic data: direct solution and optimization for high accuracy. Geophysics74, F95–F105.
    [Google Scholar]
  40. StreichR.2016. Controlled‐source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surveys in Geophysics37, 47–80.
    [Google Scholar]
  41. StreichR, BeckenM. and RitterO.2011. 2.5D controlled‐source EM modeling with general 3D source geometries. Geophysics76, F387–F393.
    [Google Scholar]
  42. UnsworthM. and OldenburgD.1995. Subspace inversion of electromagnetic data: application to mid‐ocean‐ridge exploration. Geophysical Journal International123, 161–168.
    [Google Scholar]
  43. UnsworthM.J., TravisB.T. and AlanD.C.1993. Electromagnetic induction by a finite electric dipole source over a 2‐D earth. Geophysics58, 198–214.
    [Google Scholar]
  44. WardS.H. and HohmannG.W.1988. Electromagnetic Methods in Applied Geophysics, Volume 1 Theory, vol. 1, 1st ed. Society of Exploration Geophysicists.
    [Google Scholar]
  45. WeissC.J. and ConstableS.2006. Mapping thin resistors and hydrocarbons with marine EM methods, Part II – Modeling and analysis in 3D. Geophysics71, G321–G332.
    [Google Scholar]
  46. WeitemeyerK., GaoG., ConstableS. and AlumbaughD.2010. The practical application of 2D inversion to marine controlled‐source electromagnetic data. Geophysics75, F199–F211.
    [Google Scholar]
  47. WiriantoM., MulderW.A. and SlobE.C.2011. Applying essentially non‐oscillatory interpolation to controlled‐source electromagnetic modelling. Geophysical Prospecting59, 161–175.
    [Google Scholar]
  48. YeeK.1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation14, 302–307.
    [Google Scholar]
  49. ZhangY.2017. Parallel goal‐oriented adaptive finite element modeling for 3D electromagnetic exploration. Ph.D. thesis University of California, San Diego.
  50. ZhdanovM.S.2010. Electromagnetic geophysics: notes from the past and the road ahead. Geophysics75, 75A49–75A66.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12937
Loading
/content/journals/10.1111/1365-2478.12937
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 2.5D; Electromagnetics; Finite difference methods; Modelling; Numerical study

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error