1887
Volume 68, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In glacial studies, properties such as glacier thickness and the basement permeability and porosity are key to understand the hydrological and mechanical behaviour of the system. The seismoelectric method could potentially be used to determine key properties of glacial environments. Here we analytically model the generation of seismic and seismoelectric signals by means of a shear horizontal seismic wave source on top of a glacier overlying a porous basement. Considering a one‐dimensional setting, we compute the seismic waves and the electrokinetically induced electric field. We then analyse the sensitivity of the seismic and electromagnetic data to relevant model parameters, namely depth of the glacier bottom, porosity, permeability, shear modulus and saturating water salinity of the glacier basement. Moreover, we study the possibility of inferring these key parameters from a set of very low noise synthetic data, adopting a Bayesian framework to pay particular attention to the uncertainty of the model parameters mentioned above. We tackle the resolution of the probabilistic inverse problem with two strategies: (1) we compute the marginal posterior distributions of each model parameter solving multidimensional integrals numerically and (2) we use a Markov chain Monte Carlo algorithm to retrieve a collection of model parameters that follows the posterior probability density function of the model parameters, given the synthetic data set. Both methodologies are able to obtain the marginal distributions of the parameters and estimate their mean and standard deviation. The Markov chain Monte Carlo algorithm performs better in terms of numerical stability and number of iterations needed to characterize the distributions. The inversion of seismic data alone is not able to constrain the values of porosity and permeability further than the prior distribution. In turn, the inversion of the electric data alone, and the joint inversion of seismic and electric data are useful to constrain these parameters as well as other glacial system properties. Furthermore, the joint inversion reduces the uncertainty of the model parameters estimates and provides more accurate results.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12940
2020-03-18
2024-04-19
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.2002. Quantitative Seismology, 2nd edn. Mill Valley, CA: University Science Books.
    [Google Scholar]
  2. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining Metallurgical and Petroleum Engineers1, 54–62.
    [Google Scholar]
  3. BonnetierE., TrikiF. and XueQ.2019. An inverse problem for an electroseismic model describing the coupling phenomenon of electromagnetic and seismic waves. Inverse Problems35, 1–20.
    [Google Scholar]
  4. BordesC.2005. Etude expérimentale des phénomènes transitoires sismo‐électromagnétiques: Mise en oeuvre au laboratoire souterrain à bas bruit de rustrel, PhD thesis, Université Joseph Fourier, Grenoble 1, France.
  5. BordesC., SénéchalP., BarrièreJ., BritoD., NormandinE. and JougnotD.2015. Impact of water saturation on seismoelectric transfer functions: a laboratory study of coseismic phenomenon. Geophysical Journal International200, 1317–1335.
    [Google Scholar]
  6. BrandtS.1989. Statistical and Computational Methods in Data Analysis. Elsevier.
    [Google Scholar]
  7. ButlerK.E., KulessaB. and PuginA.J.2018. Multimode seismoelectric phenomena generated using explosive and vibroseis sources. Geophysical Journal International213, 836–850.
    [Google Scholar]
  8. CarcioneJ., SerianiG. and GeiD.2003. Acoustic and electromagnetic properties of soil saturated with salt water and NAPL. Journal of Applied Geophysics52, 177–191.
    [Google Scholar]
  9. ChenJ., HoverstenG.M., VascoD., RubinY. and HouZ.2007. A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data. Geophysics72, WA85–WA95.
    [Google Scholar]
  10. ChenJ. and YangY.2013. Inverse problem of electro‐seismic conversion. Inverse Problems29, 1–15.
    [Google Scholar]
  11. CollinsJ., FrankS. and MetzlerA.2016. Elastic parabolic equation and normal mode solutions for seismo‐acoustic propagation in underwater environments with ice covers. The Journal of the Acoustical Society of America139, 2672.
    [Google Scholar]
  12. DeviM., GaramboisS., BritoD., DietrichM., PoydenotV. and BordesC.2018. A novel approach for seismoelectric measurements using multielectrode arrangements: II—laboratory measurements. Geophysical Journal International214, 1783–1799.
    [Google Scholar]
  13. DietrichM., DeviM., GaramboisS., BritoD. and BordesC.2018. A novel approach for seismoelectric measurements using multielectrode arrangements – I: theory and numerical experiments. Geophysical Journal International215, 61–80.
    [Google Scholar]
  14. DupuyB., GaramboisS. and VirieuxJ.2016. Estimation of rock physics properties from seismic attributes — Part 1: strategy and sensitivity analysis. Geophysics80, M35–M53.
    [Google Scholar]
  15. DzieranL., ThorwartM., RabbelW. and RitterO.2019. Quantifying interface responses with seismoelectric spectral ratios. Geophysical Journal International217, 108–121.
    [Google Scholar]
  16. FiorentinoE., ToussaintR. and JouniauxL.2017. Two‐phase lattice Boltzmann modelling of streaming potentials: influence of the gas‐water interface on the electrokinetic coupling. Geophysical Journal International208, 1139–1156.
    [Google Scholar]
  17. GaoY., HuangF. and HuH.2017a. Comparison of full and quasi‐static seismoelectric analytically based modeling. Journal of Geophysical Research: Solid Earth122, 8066–8106.
    [Google Scholar]
  18. GaoY., HuangF. and HuH.2017b. Seismoelectric responses to an explosive source in a fluid above a fluid‐saturated porous medium. Journal of Geophysical Research: Solid Earth122, 7190–7218.
    [Google Scholar]
  19. GaoY., WangD., YaoC., GuanW., HuH., ZhangW.et al. 2019. Simulation of seismoelectric waves using finite‐difference frequency‐domain method: 2D SHTE mode. Geophysical Journal International216, 414–438.
    [Google Scholar]
  20. GaramboisS. and DietrichM.2002. Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid‐saturated stratified porous media. Journal of Geophysical Research107, ESE 5-1–ESE 5-18.
    [Google Scholar]
  21. GelmanA. and RubinD.B.1992. Inference from iterative simulation using multiple sequences. Statistical Science7, 457–472.
    [Google Scholar]
  22. GilksW.R., RichardsonS. and SpiegelhalterD.1995. Markov Chain Monte Carlo in Practice. Chapman and Hall/CRC.
    [Google Scholar]
  23. GrobbeN. and SlobE.2016. Seismo‐electromagnetic thin‐bed responses: natural signal enhancements?Journal of Geophysical Research: Solid Earth121, 2460–2479.
    [Google Scholar]
  24. GuanW., HuH. and WangZ.2013. Permeability inversion from low‐frequency seismoelectric logs in fluid‐saturated porous formations. Geophysical Prospecting61, 120–133.
    [Google Scholar]
  25. GuanW., ShiP. and HuH.2018. Contributions of poroelastic‐wave potentials to seismoelectromagnetic wavefields and validity of the quasi‐static calculation: a view from a borehole model. Geophysical Journal International212, 458–475.
    [Google Scholar]
  26. GueguenY. and PalciauskasV.1994. Introduction to the Physics of Rocks, Princeton University Press.
  27. HaartsenM.W. and PrideS.1997. Electroseismic waves from point sources in layered media. Journal of Geophysical Research102, 24,745–24,769.
    [Google Scholar]
  28. HahnT.2005. Cuba—library for multidimensional numerical integration. Computer Physics Communications168, 78–95.
    [Google Scholar]
  29. HainesS.S., GuittonA. and BiondiB.2007a. Seismoelectric data processing for surface surveys of shallow targets. Geophysics72, G1–G8.
    [Google Scholar]
  30. HainesS.S., GuittonA. and BiondiB.2007b. Seismoelectric imaging of shallow targets. Geophysics72, G9–G20.
    [Google Scholar]
  31. HainesS.H. and PrideS.R.2006. Seismoelectric numerical modeling on a grid. Geophysics71, 57–65.
    [Google Scholar]
  32. HassanA.E., BekhitH.M. and ChapmanJ.B.2009. Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model. Environmental Modelling & Software24, 749–763.
    [Google Scholar]
  33. HolzhauerJ., BritoD., BordesC., BrunY. and GuatarbesB.2017. Experimental quantification of the seismoelectric transfer function and its dependence on conductivity and saturation in loose sand. Geophysical Prospecting65, 1097–1120.
    [Google Scholar]
  34. HuH. and GaoY.2011. Electromagnetic field generated by a finite fault due to electrokinetic effect. Journal of Geophysical Research: Solid Earth116, no. B8.
    [Google Scholar]
  35. HuH., GuanW. and HarrisJ.2007. Theoretical simulation of electroacoustic borehole logging in a fluid‐saturated porous formation. The Journal of the Acoustical Society of America122, 135–145.
    [Google Scholar]
  36. HuH. and LiuJ.2002. Simulation of the converted electric field during acoustoelectric logging. 72nd SEG Annual International meeting, Expanded Abstracts, 348–351.
  37. HuH., WangJ. and GuanW.2015. Experimental measurements of seismoelectric signals in borehole models. Geophysical Journal International203, 1937–1945.
    [Google Scholar]
  38. JardaniA., RevilA., SlobE. and SöllnerW.2010. Stochastic joint inversion of 2D seismic and seismoelectric signals in linear poroelastic materials: a numerical investigation. Geophysics75, N19–N31.
    [Google Scholar]
  39. JardaniA. and RevilA.2015. Seismoelectric couplings in a poroelastic material containing two immiscible fluid phases. Geophysical Journal International202, 850–870.
    [Google Scholar]
  40. JeffreysH.1998. The Theory of Probability. Oxford University Press.
    [Google Scholar]
  41. JohnsonD.L., KoplikJ. and DashenR.1987. Theory of dynamic permeability in fluid saturated porous media. Journal of Fluid Mechanics176, 379–402.
    [Google Scholar]
  42. JougnotD., RubinoJ., CarbajalM.R., LindeN. and HolligerK.2013. Seismoelectric effects due to mesoscopic heterogeneities. Geophysical Research Letters40, 2033–2037.
    [Google Scholar]
  43. JouniauxL. and ZysermanF.2016. A review on electrokinetically induced seismo‐electrics, electro‐seismics, and seismo‐magnetics for Earth sciences. Solid Earth7, 249–284.
    [Google Scholar]
  44. KalscheuerT., De los Ángeles García JuanateyM., MeqbelN. and PedersenL.B.2010. Non‐linear model error and resolution properties from two‐dimensional single and joint inversions of direct current resistivity and radiomagnetotelluric data. Geophysical Journal International182, 1174–1188.
    [Google Scholar]
  45. KrawczykC., PolomU. and BeileckeT.2013. Shear‐wave reflection seismics as a valuable tool for near‐surface urban applications. The Leading Edge32, 253–263.
    [Google Scholar]
  46. KrögerB., YaramanciU. and KemnaA.2014. Numerical analysis of seismoelectric wave propagation in spatially confined geological units. Geophysical Prospecting62, 133–147.
    [Google Scholar]
  47. KulessaB., MurrayT. and RippinD.2006. Active seismoelectric exploration of glaciers. Geophysical Research Letters33, L07503.
    [Google Scholar]
  48. LiuZ., YuanL., ZhangX., LiuZ. and WuH.2008. A laboratory seismoelectric measurement for the permafrost model with a frozen‐unfrozen interface. Geophysical Research Letters35, L21404.
    [Google Scholar]
  49. LøsethL., PedersenH., UrsinB., AmundsenL. and EllingsrudS.2006. Low‐frequency electromagnetic fields in applied geophysics: waves or diffusion?Geophysics71, W29–W40.
    [Google Scholar]
  50. MahardikaH.2013. Coupled hydromechanical and electromagnetic responses in unsaturated porous media: theory, observation, and numerical simulations. PhD thesis, Colorado School of Mines, USA.
  51. MahardikaH., RevilA. and JardaniA.2012. Waveform joint inversion of seismograms and electrograms for moment tensor characterization of fracking events. Geophysics77, ID23–ID39.
    [Google Scholar]
  52. MavkoG., MukerjiT. and DvorkinJ.2009. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge University Press.
    [Google Scholar]
  53. MonachesiL., RubinoG., Rosas‐CarbajalM., JougnotD., LindeN., QuintalB.et al. 2015. An analytical study of seismoelectric signals produced by 1D mesoscopic heterogeneities. Geophysical Journal International201, 329–342.
    [Google Scholar]
  54. MonachesiL., ZysermanF. and JouniauxL.2018a. An analytical solution to assess the SH seismoelectric response of the vadose zone. Geophysical Journal International213, 1999–2019.
    [Google Scholar]
  55. MonachesiL., ZysermanF. and JouniauxL.2018b. SH seismoelectric response of a glacier: an analytic study. Journal of Geophysical Research: Earth Surface123, 2135–2156.
    [Google Scholar]
  56. MosegaardK. and TarantolaA.1995. Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research: Solid Earth100, 12431–12447.
    [Google Scholar]
  57. MosegaardK. and TarantolaA.2002. Probabilistic approach to inverse problems. International Geophysics Series81, 237–268.
    [Google Scholar]
  58. MunchF.D. and ZysermanF.I.2016. Detection of non‐aqueous phase liquid contamination by SH‐TE seismoelectrics: a computational feasibility study. Journal of Applied Geophysics130, 8–22.
    [Google Scholar]
  59. OverbeekJ.T.G.1952. Electrochemistry of the double layer. In: Colloid Science, Irreversible Systems, Vol. 1 (ed. H. R.Kruyt), pp. 115–193. Elsevier.
    [Google Scholar]
  60. PengR., DiB., WeiJ., DingP., ZhaoJ., PanX.et al. 2017. Experimental study of the seismoelectric interface response in wedge and cavity models. Geophysical Journal International210, 1703–1720.
    [Google Scholar]
  61. PetrenkoV. and WhitworthR.1999. Physics of Ice. Clarendon Press.
    [Google Scholar]
  62. PolomU., HofstedeC., DiezA. and EisenO.2014. First glacier‐vibroseismic experiment ‐ results from cold firn of Colle Gnifetti. Near Surface Geophysics12, 494–504.
    [Google Scholar]
  63. PressW., TeukolskyS., VetterlingW. and FlanneryB.2007. Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press.
    [Google Scholar]
  64. PrideS.1994. Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Review B Condensed Matter50, 15678–15695.
    [Google Scholar]
  65. PrideS. and GaramboisS.2005. Electroseismic wave theory of Frenkel and more recent developments. Journal of Engineering Mechanics131, 697–706.
    [Google Scholar]
  66. PrideS.R.2005. Relationships between seismic and hydrological properties. In: Hydrogeophysics (eds Y.Rubin and S.S.Hubbard), pp. 253–291. Springer.
    [Google Scholar]
  67. RapettiF. and RousseauxG.2014. On quasi‐static models hidden in Maxwell's equations. Applied Numerical Mathematics79, 92–106.
    [Google Scholar]
  68. RenH., HuangQ. and ChenX.2016. Existence of evancescent electromagnetic waves resulting from seismoelectric conversion at a solid‐porous interface. Geophysical Journal International204, 147–166.
    [Google Scholar]
  69. RenH., HuangQ. and ChenX.2018. Quantitative understanding on the amplitude decay characteristic of the evanescent electromagnetic waves generated by seismoelectric conversion. Pure and Applied Geophysics175, 2853–2879.
    [Google Scholar]
  70. RevilA., JardaniA., SavaP. and HaasA.2015. The Seismoelectric Method: Theory and Application. Wiley Blackwell.
    [Google Scholar]
  71. RevilA. and MahardikaH.2013. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials. Water Resources Research49, 744–766.
    [Google Scholar]
  72. RobinsonE.A. and TreitelS.2000. Geophysical Signal Analysis. Society of Exploration Geophysicists.
  73. Rosas‐CarbajalM., LindeN., KalscheuerT. and VrugtJ.A.2014. Two‐dimensional probabilistic inversion of plane‐wave electromagnetic data: methodology, model constraints and joint inversion with electrical resistivity data. Geophysical Journal International196, 1508–1524.
    [Google Scholar]
  74. Rosas‐CarbajalM., LindeN., PeacockJ., ZysermanF., KalscheuerT. and ThielS.2015. Probabilistic three‐dimensional time‐lapse inversion of magnetotelluric data to infer mass transfer in a geothermal system. Geophysical Journal International203, 1946–1960.
    [Google Scholar]
  75. SambridgeM. and DrijkoningenG.1992. Genetic algorithms in seismic waveform inversion. Geophysical Journal International109, 323–342.
    [Google Scholar]
  76. SambdridgeM. and MosegaardK.2002. Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics40, 1–29.
    [Google Scholar]
  77. SantosJ., RavazzoliC., GauzellinoP. and CarcioneJ.2005. Numerical simulation of ultrasonic waves in reservoir rocks with patchy saturation and fractal petrophysical properties. Computational Geosciences9, 1–27.
    [Google Scholar]
  78. SantosJ., RavazzoliC., GauzellinoP., CarcioneJ. and CavalliniF.2004. Simulation of waves in poro‐viscoelastic rocks saturated by immiscible fluids. numerical evidence of a second slow wave. Journal of Computational Acoustics12, 1–21.
    [Google Scholar]
  79. SantosJ.E.2009. Finite element approximation of coupled seismic and electromagnetic waves in fluid‐saturated poroviscoelastic media. Numerical Methods for Partial Differential Equations27, 351–386.
    [Google Scholar]
  80. SchönJ.1996. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, Vol. 18. Elsevier.
    [Google Scholar]
  81. SenM.K. and StoffaP.L.1992. Rapid sampling of model space using genetic algorithms: examples from seismic waveform inversion. Geophysical Journal International108, 281–292.
    [Google Scholar]
  82. SiegertM.J., KulessaB., BougamontM., ChristoffersenP., KeyK., AndersenK.R.et al. 2018. Antarctic subglacial groundwater: a concept paper on its measurement and potential influence on ice flow. Geological Society, London, Special Publications461, 197–213.
    [Google Scholar]
  83. TarantolaA.2005. Inverse Problem Theory and Methods for Model Parameter Estimation, Vol. 89. SIAM.
    [Google Scholar]
  84. TarantolaA. and ValetteB.1982. Inverse problems = quest for information. Journal of Geophysics50, 150–170.
    [Google Scholar]
  85. Ter BraakC.J.2006. A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Statistics and Computing16, 239–249.
    [Google Scholar]
  86. VrugtJ., ter BraakC., DiksC., RobinsonB., HymanJ. and HigdonD.2009. Accelerating Markov chain Monte Carlo simulation by differential evolution with self‐adaptive randomized subpace sampling. International Journal of Nonlinear Sciences and Numerical Simulation10, 273–290.
    [Google Scholar]
  87. WardenS., GaramboisS., JouniauxL., BritoD., SailhacP. and BordesC.2013. Seismoelectric wave propagation numerical modeling in partially saturated materials. Geophysical Journal International194, 1498–1513.
    [Google Scholar]
  88. WardenS., GaramboisS., SailhacP., JouniauxL. and BanoM.2012. Curvelet‐based seismoelectric data processing. Geophysical Journal International190, 1533–1550.
    [Google Scholar]
  89. ZysermanF., GauzellinoP. and SantosJ.2010. Finite element modeling of SHTE and PSVTM electroseismics. Journal of Applied Geophysics72, 79–91.
    [Google Scholar]
  90. ZysermanF., GauzellinoP. and SantosJ.2012. Numerical evidence of gas hydrate detection by means of electroseismics. Journal of Applied Geophysics86, 98–108.
    [Google Scholar]
  91. ZysermanF., JouniauxL., WardenS. and GaramboisS.2015. Borehole seismoelectric logging using a shear‐wave source: possible application to CO2 disposal?International Journal of Greenhouse Gas Control33, 82–102.
    [Google Scholar]
  92. ZysermanF., MonachesiL. and JouniauxL.2017a. Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone. Geophysical Journal International208, 918–935.
    [Google Scholar]
  93. ZysermanF., MonachesiL. and JouniauxL.2017b. Reply to ‘Comment on “Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone by F.I. Zyserman, L.B. Monachesi and L. Jouniaux” by Revil, A'. Geophysical Journal International210, 1652–1658.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12940
Loading
/content/journals/10.1111/1365-2478.12940
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Electromagnetics; Inversion; Modelling; Parameter Estimation; Seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error