1887
Volume 68, Issue 6
  • E-ISSN: 1365-2478
PDF

Abstract

ABSTRACT

In the framework of the Deep Electromagnetic Soundings for Mineral Exploration project, we conducted ground‐based long‐offset transient‐electromagnetic measurements in a former mining area in eastern Thuringia, Germany. The large‐scale survey resulted in an extensive dataset acquired with multiple high‐power transmitters and a high number of electric and magnetic field receivers. The recorded data exhibit a high data quality over several decades of time and orders of magnitude. Although the obtained subsurface models indicate a strong multi‐dimensional subsurface with variations in resistivity over three orders of magnitude, the electrical field step‐on transients are well fitted using a conventional one‐dimensional inversion. Due to superimposed induced polarization effects, the transient step‐off data are not interpretable with conventional electromagnetic inversion. For further interpretation in one and two dimensions, a new approach to evaluate the long‐offset transient‐electromagnetic data in frequency domain is realized. We present a detailed workflow for data processing in both domains and give an overview of technical obstructions that can occur in one domain or the other. The derived one‐dimensional inversion models of frequency‐domain data show strong multi‐dimensional effects and are well comparable with the conventional time domain inversion results. To adequately interpret the data, a 2.5D frequency‐domain inversion using the open source algorithm MARE2DEM (Modeling with Adaptively Refined Elements for 2‐D EM) is carried out. The inversion leads to a consistent subsurface model with shallow and deep conductive structures, which are confirmed by geology and additional geophysical surveys.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12957
2020-05-18
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/gpr/68/6/gpr12957.html?itemId=/content/journals/10.1111/1365-2478.12957&mimeType=html&fmt=ahah

References

  1. Airo, M.‐L. (2015) Geophysical signatures of mineral deposit types in finland. Geological Survey of Finland, Special Paper, 58, 9–70.
    [Google Scholar]
  2. Cai, J., Tezkan, B. and Li, Y. (2018) Effects of the sea floor topography on the 1D inversion of time‐domain marine controlled source electromagnetic data. Geophysical Prospecting, 66(8), 1602–1624.
    [Google Scholar]
  3. Cole, K.S. and Cole, R.H. (1941) Dispersion and absorption in dielectrics. I. alternating current characteristics. The Journal of Chemical Physics, 9(4), 341–351.
    [Google Scholar]
  4. Commer, M. (2003) Three‐dimensional inversion of transient‐electromagnetic data: a comparative study. PhD thesis, University of Cologne.
  5. Constable, S.C., Parker, R.L. and Constable, C.G. (1987) Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289–300.
    [Google Scholar]
  6. Dill, H.G. (1993) Die Antimonvorkommen der mitteleuropäischen Alpiden und Varisziden. Z Dtsch Geol Ges, 144, 434–450.
    [Google Scholar]
  7. Edwards, R.N. (1997) On the resource evaluation of marine gas hydrate deposits using sea‐floor transient electric dipole–dipole methods. Geophysics, 62(1), 63–74.
    [Google Scholar]
  8. Egbert, G.D. and Booker, J.R. (1986) Robust estimation of geomagnetic transfer functions. Geophysical Journal of the Royal Astronomical Society, 87(1), 173–194.
    [Google Scholar]
  9. Gräbe, R., Schlegel, G. and Wiefel, H. (1996) Digitale geologische Karte von Thüringen 1:25000, Blatt 5436 Schleiz. Thüringer Landesanstalt für Umwelt und Geologie, Jena, Germany.
  10. Grayver, A.V., Streich, R. and Ritter, O. (2013) Three‐dimensional parallel distributed inversion of CSEM data using a direct forward solver. Geophysical Journal International, 193(3), 1432–1446.
    [Google Scholar]
  11. Hanstein, T., Eilenz, H. and Strack, K. (1986) Einige Aspekte der Aufbereitung von LOTEM Daten. In: Protokoll über das 11. Kolloquium Elektromagnetische Tiefenforschung, pp. 319–328.
    [Google Scholar]
  12. Haroon, A., Adrian, J., Bergers, R., Gurk, M., Tezkan, B., Mammadov, A. and Novruzov, A. (2015) Joint inversion of long‐offset and central‐loop transient electromagnetic data: application to a mud volcano exploration in Perekishkul, Azerbaijan. Geophysical Prospecting, 63(2), 478–494.
    [Google Scholar]
  13. Hoheisel, A. (2000) Untersuchung des Einflusses von Induzierter Polarisation (IP) auf Long‐Offset Transient Electromagnetics (LOTEM). Master's thesis, University of Cologne, Institute for Geophysics and Meteorology.
  14. Hoheisel, A., Hördt, A. and Hanstein, T. (2004) The influence of induced polarization on long‐offset transient electromagnetic data. Geophysical Prospecting, 52(5), 417–426.
    [Google Scholar]
  15. Hördt, A. (1989) Ein Verfahren zur Joint Inversion angewandt auf Long Offset Electromagnetics (LOTEM) und Magnetotellurik (MT). Diploma thesis, University of Cologne.
  16. Hördt, A. (1992) Interpretation transient elektromagnetischer Tiefensondierungen für anisotrop horizontal geschichtete und für dreidimensionale Leitfähigkeitsstrukturen. PhD thesis, University of Cologne.
  17. Kaufman, A.A. and Keller, G.V. (1983) Frequency and Transient Soundings, Vol. 16. Elsevier.
    [Google Scholar]
  18. Key, K. and Ovall, J. (2011) A parallel goal‐oriented adaptive finite element method for 2.5‐D electromagnetic modelling. Geophysical Journal International, 186(1), 137–154.
    [Google Scholar]
  19. Kingman, J.E., Halverson, M. and Garner, S.J. (2004) Stacking of controlled source electrical geophysical data, Terrigena technical white paper number 20040328.0101(e), Available at: http://www.terngena.com/images/stones/pdf/Terrigena.0101%28e%29.Stacking.USLetter.pdf [Accessed 20 January 2015].
  20. Levenberg, K. (1944) A method for the solution of certain non‐linear problems in least squares. Quarterly of applied mathematics, 2(2), 164–168.
    [Google Scholar]
  21. Liebe, K.T., Zimmermann, E., Kaiser, E. and Weise, E. (1912) Digitale geologische Karte von Thüringen 1:25000, Blatt 5437 Mühltroff. Thüringer Landesanstalt für Umwelt und Geologie, Jena, Germany.
  22. Marquardt, D.W. (1963) An algorithm for least‐squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431–441.
    [Google Scholar]
  23. Martin, R. (2009) Development and application of 2D and 3D transient electromagnetic inverse solutions based on adjoint Green functions: a feasibility study for the spatial reconstruction of conductivity distributions by means of sensitivities. PhD thesis, University of Cologne.
  24. Martin, T., Flores‐Orozco, A., Guenther, T. and Dahlin, T. (2018) Comparison of TDIP and SIP measurements in the field scale. In: 5th International Workshop on Induced Polarization, 3–5 October 2018, Newark, NJ.
    [Google Scholar]
  25. Mörbe, W. (2020) Deep controlled source electromagnetics for mineral exploration: a multidimensional validation study in time and frequency domain. PhD thesis, University of Cologne.
  26. Nabighian, M.N. and Elliot, C.L. (1976) Negative induced‐polarization effects from layered media. Geophysics, 41(6), 1236–1255.
    [Google Scholar]
  27. Nittinger, C., Cherevatova, M., Becken, M., Rochlitz, R., Günther, T., Martin, T. and Matzander, U. (2017) Novel semi‐airborne CSEM system for the exploration of mineral resources. In: EGU General Assembly Conference Abstracts, Vol. 19, p. 15439.
    [Google Scholar]
  28. Oldenburg, D.W., Haber, E. and Shekhtman, R. (2012) Three dimensional inversion of multisource time domain electromagnetic data. Geophysics, 78(1), E47–E57.
    [Google Scholar]
  29. Pankratov, O.V. and Geraskin, A.I. (2010) On processing of controlled source electromagnetic (CSEM) data. Geologica Acta, 8(1), 0031–49.
    [Google Scholar]
  30. Schiffler, M., Chwala, A., Kukowski, N., Meyer, H.G., Meyer, M., Meyer, U. and Stolz, R. (2017) Development of new magnetic field sensors for electromagnetic mineral exploration in the DESMEX project. In Frühjahrstagung der Deutschen Geophysikalischen Gesellschaft.
    [Google Scholar]
  31. Scholl, C. (2001) Die Periodizität von Sendesignalen bei LOTEM. Diploma thesis, University of Cologne.
  32. Scholl, C. and Edwards, R.N. (2007) Marine downhole to seafloor dipole–dipole electromagnetic methods and the resolution of resistive targets. Geophysics, 72(2), WA39–WA49.
    [Google Scholar]
  33. Smirnova, M.V., Becken, M., Nittinger, C., Yogeshwar, P., Mörbe, W., Rochlitz, R., Steuer, A., Costabel, S., Smirnov, M.Y. and Group, D.W. (2019) A novel semiairborne frequency‐domain controlled‐source electromagnetic system: three‐dimensional inversion of semiairborne data from the flight experiment over an ancient mining area near Schleiz, Germany. Geophysics, 84(5), E281–E292.
    [Google Scholar]
  34. Spagnoli, G., Hannington, M., Bairlein, K., Hördt, A., Jegen, M., Petersen, S. and Laurila, T. (2016) Electrical properties of seafloor massive sulfides. Geo‐Marine Letters, 36(3), 235–245.
    [Google Scholar]
  35. Spies, B.R. and Frischknecht, F.C. (1991) Electromagnetic sounding. Electromagnetic Methods in Applied Geophysics, 2(Part A), 285–426.
    [Google Scholar]
  36. Steuer, A., Siemon, B., Pielawa, J., Petersen, H., Vob, V., Balzer, H.U. and Plath, C. (2015) Zwischenbericht Hubschraubergeophysik Befliegung DESMEX Teil 1. Technical report, Bundesanstalt für Geowissenschaften und Rohstoffe.
  37. Strack, K.‐M. (1992) Exploration with Deep Transient Electromagnetics, Vol. 30. Elsevier.
    [Google Scholar]
  38. Streich, R. (2016) Controlled‐source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surveys in Geophysics, 37(1), 47–80.
    [Google Scholar]
  39. Yogeshwar, P., Küpper, M., Tezkan, B., Rath, V., Kiyan, D., Byrdina, S., Cruz, J.Andrade, C. and Viveiros, F. (2020) Innovative boat‐towed transient electromagnetics—investigation of the Furnas volcanic lake hydrothermal system, Azores. Geophysics, 85(2), E41–E56.
    [Google Scholar]
  40. Zhdanov, M.S. (2002) Geophysical Inverse Theory and Regularization Problems, Vol. 36. Elsevier.
    [Google Scholar]
  41. Zhdanov, M.S. (2010) Electromagnetic geophysics: notes from the past and the road ahead. Geophysics, 75(5), 75A49–75A66.
    [Google Scholar]
  42. Ziolkowski, A., Hobbs, B.A. and Wright, D. (2007) Multitransient electromagnetic demonstration survey in France. Geophysics, 72(4), F197–F209.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12957
Loading
/content/journals/10.1111/1365-2478.12957
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error