1887
Volume 68, Issue 7
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Recently, the interest in PS‐converted waves has increased for several applications, such as sub‐basalt layer imaging, impedance estimates and amplitude‐versus‐offset analysis. In this study, we consider the problem of separation of PP‐ and PS‐waves from pre‐stacked multicomponent seismic data in two‐dimensional isotropic medium. We aim to demonstrate that the finite‐offset common‐reflection‐surface traveltime approximation is a good alternative for separating PP‐ and PS‐converted waves in common‐offset and common shot configurations by considering a two‐dimensional isotropic medium. The five parameters of the finite‐offset common‐reflection‐surface are firstly estimated through the inversion methodology called , which estimates all parameters simultaneously. Next, the emergence angle, one of the inverted parameters, is used to build an analytical separation function of PP and PS reflection separation based on the wave polarization equations. Once the PP‐ and PS‐converted waves were separated, the sections are stacked to increase the signal‐to‐noise ratio using the special curves derived from finite‐offset common‐reflection‐surface approximation. We applied this methodology to a synthetic dataset from simple‐layered to complex‐structured media. The numerical results showed that the inverted parameters of the finite offset common‐reflection‐surface and the separation function yield good results for separating PP‐ and PS‐converted waves in noisy common‐offset and common shot gathers.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12980
2020-06-08
2024-04-19
Loading full text...

Full text loading...

References

  1. Basu, A. and Frazer, L.N. (1990) Rapid determination of critical temperature in simulated annealing inversion. Science, 249, 1409–1412.
    [Google Scholar]
  2. Bergler, S. (2001) The common‐reflection‐surface stack for common‐offset: theory and application. Master's thesis, University of Karlsruhe.
  3. Bergler, S., Duveneck, E., Hoecth, G., Zhang, Y. and Hubral, P. (2002) Common‐reflection surface stack for converted waves. Studia Geophysica et Geodaetica, 46, 165–175.
    [Google Scholar]
  4. Boelsen, T. and Mann, J. (2004) 2D‐COCRS stack for ocean bottom seismics and multicomponent data. Technical report. Wave Inversion Technology, Karlsruher Institut für Technologie.
  5. Born, M. and Wolf, E. (1959) Principles of Optics. Pergamon Press.
    [Google Scholar]
  6. Červený, V. (2001) Seismic Ray Theory. Cambridge University Press.
    [Google Scholar]
  7. Červený, V., Molotkov, I. and Pšenčík, I. (1977) Ray Method in Seismology. Prague, Czech Republic: Charles University Press.
    [Google Scholar]
  8. Červený, V. and Pšenčík, I. (2002) Ray‐theory amplitudes and synthetic seismograms in 2‐D inhomogeneous isotropic layered structures. Program package SEIS. Technical report, Department of Geophysics. Charles University.
  9. Donati, M. (1996) P‐ and S‐wave separation using three‐component modal filters. PhD thesis. University of Calgary.
  10. Garabito, G., Oliva, P. and Cruz, J. (2011) Numerical analysis of the finite‐offset common reflection surface traveltime approximations. Journal of Applied Geophysics, 74, 89–99.
    [Google Scholar]
  11. Gelchinsky, B., Berkovithc, A. and Keydar, S. (1999a) Multifocusing homeomorphic imaging: Part 1. Basic concepts and formulas. Journal of Applied Geophysics, 42, 229–242.
    [Google Scholar]
  12. Gelchinsky, B., Berkovithc, A. and Keydar, S. (1999b) Multifocusing homeomorphic imaging: Part 2. Multifold data set and multifocusing. Journal of Applied Geophysics, 42, 229–242.
    [Google Scholar]
  13. Helbig, K. and Mesdag, C. (1982) The potential of shear‐wave observations. Geophysical Prospecting, 30, 413–431.
    [Google Scholar]
  14. Höcht, G., DeBazelaire, E., Majer, P. and Hubral, P. (1999) Seismics and optics: hyperbolae and curvatures. Journal of Applied Geophysics, 42, 261–281.
    [Google Scholar]
  15. Hoecht, G., Ricarte, P., Bergler, S. and Landa, E. (2009) Operator‐oriented CRS interpolation. Geophysical Prospecting, 57, 957–979.
    [Google Scholar]
  16. Hubral, P. and Krey, T. (1980) Interval Velocities from Seismic Reflection Time Measurements. SEG Publishing.
    [Google Scholar]
  17. Ingber, L. (1989) Very fast simulated reannealing. Mathematical and Computer Modeling, 12, 967–993.
    [Google Scholar]
  18. Ivanova, A., Bergmann, P., Kummerow, J., Yang, C., Lüth, S. and C., J. (2013) Seismic modeling of the AVO/AVA response to CO2 injection at the Ketzin site, Germany. Energy Procedia, 40, 490–498.
    [Google Scholar]
  19. Jäger, R. (1999) The common‐reflection‐surface stack ‐ theory and application. Master's thesis, University of Karlsruhe. 52
  20. Jäger, R., Mann, J., Hoecht, G. and Hubral, P. (2001) Common‐reflection‐surface stack: Image and attributes. Geophysics, 66, 97–109.
    [Google Scholar]
  21. Landa, E., Gurevich, B., Keydar, S. and Trachtman, P. (1999) Application of multifocusing method for subsurface imaging. Journal of Applied Geophysics, 3, 283–300.
    [Google Scholar]
  22. Li, Z., Ma, X., Fu, C., Gu, B. and Liang, G. (2016) Frequency‐wavenumber implementation for P‐ and S‐wave separation from multi‐component seismic data. Exploration Geophysics, 47, 32–43.
    [Google Scholar]
  23. Mahmoudian, F. and Margrave, G. (2006) P‐wave impedance, S‐wave impedance and density from linear AVO inversion: Application to VSP data from Alberta. Technical report. Consortium for Research in Elastic Wave Exploration Seismology, University of Calgary.
  24. Mesquita, M., Cruz, J.C. and Garabito, G. (2019) Velocity inversion by global optimization using finite‐offset common‐reflection‐surface stacking applied to synthetic and Tacutu Basin seismic data. Geophysics84(2), R165‐R174.
    [Google Scholar]
  25. Müller, T. (1999) The common‐reflection‐surface stack method ‐ seismic imaging without explicit knowledge of the velocity model. PhD thesis, University of Karlsruhe.
  26. Neidell, N. and Taner, M. (1971) Semblance and other coherency measures for multichannel data. Geophysics, 36, 468–497.
    [Google Scholar]
  27. Rothman, D. (1985) Nonlinear inversion, statistical mechanics, and residual statics estimation. Geophysics, 50, 2784–2796.
    [Google Scholar]
  28. Sen, K. and Stoffa, P. (2013) Global Optimization Methods in Geophysical Inversion. Cambridge University Press.
    [Google Scholar]
  29. Thorbecke, J. (2017) 2‐D Finite‐Difference Wavefield Modelling. Delft University.
    [Google Scholar]
  30. Thore, P.D., DeBazelaire, E. and Rays, M. (1994) Three parameter equation: an efficient tool to enhance the stack. Geophysics, 59, 297–308.
    [Google Scholar]
  31. Vanelle, C., Abakumov, I. and Gajewski, D. (2018) Wavefront attributes in anisotropic media. Geophysical Journal International, 214, 430–443.
    [Google Scholar]
  32. Wang, Y. and Singh, C. (2003) Separation of P‐ and S‐wavefields from wide‐angle multicomponent OBC data for a basalt model. Geophysical Prospecting, 51, 233–245.
    [Google Scholar]
  33. Xu, S. and Stovas, A. (2015) Curvature and anisotropy estimation through the CRS approximation. Journal of Geophysics and Engineering, 12, 934–945.
    [Google Scholar]
  34. Zhang, Y., Bergler, S. and Hubral, P. (2001) Common‐reflection‐surface (CRS) stack for common‐offset. Geophysical Prospecting, 49, 709–718.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12980
Loading
/content/journals/10.1111/1365-2478.12980
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error