1887
Volume 68, Issue 7
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Magnetic measurements with an unmanned aerial vehicle are ideal for filling the gap between ground and airborne magnetic surveying. However, to obtain accurate aeromagnetic data, the compensation of magnetic effects of the unmanned aerial vehicle is a challenge. Typically, scalar magnetometers are towed several metres under the unmanned aerial vehicle to minimize its magnetic field. In this study, a fluxgate three‐component magnetometer is attached 42 cm in front of the unmanned aerial vehicle at the tip of a composite pipe. Using a scalar calibration, the sensor can be calibrated, and the permanent and induced magnetic fields of the unmanned aerial vehicle can be compensated. The contributions of the magnetic measurements at different altitudes to the unmanned aerial vehicle results were tested over an area of 1 km² in the Northern Vosges Mountains. The area is located in a hamlet surrounded by a forest where few geological outcrops are observed. Three magnetic surveys of the same area are obtained at different altitudes: 100, 30 and 1 m above the ground. The unmanned aerial vehicle magnetic data are compared with a helicopter aeromagnetic survey at 300 m above the ground and a ground magnetic survey using upward continuations of the maps to compare the results. The magnetic maps (300, 100, 30 and 1 m above the ground) show very different magnetic anomaly patterns (e.g. amplitude, shape, wavelength and orientation). The magnetic data at different altitudes improve the understanding of the geology from the local to more general scales.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12991
2020-06-25
2024-04-19
Loading full text...

Full text loading...

References

  1. Bailleux, P. (2012) Multidisciplinary approach to understand the localization of geothermal anomalies in the Upper Rhine Graben regional to local scale. PhD thesis, University of Neuchâtel, 35–40.
  2. Bertrand, L., Gavazzi, B., Mercier de Lépinay, J., Diraison, M., Géraud, Y. and Munschy, M. (2020) On the use of aeromagnetism for geological interpretation: 2. A case study on structural and lithological features in the Northern Vosges. Journal of Geophysical Research: Solid Earth, 125 (5), https://doi.org/10.1029/2019jb017688.
    [Google Scholar]
  3. Bertrand, L., Jusseaume, J., Géraud, Y., Diraison, M., Damy, P.‐C., Navelot, V.et al., (2018) Structural heritage, reactivation and distribution of fault and fracture network in a rifting context: Case study of the western shoulder of the Upper Rhine Graben. Journal of Structural Geology, 108, 243–255. https://doi.org/10.1016/j.jsg.2017.09.006
    [Google Scholar]
  4. Blakely, R.J. (1996) Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, pp. 313–319.
    [Google Scholar]
  5. Bossennec, C., Géraud, Y., Moretti, I., Mattioni, L. and Stemmelen, D. (2018) Pore network properties of sandstones in a fault damage zone. Journal of Structural Geology, 110, 24–44. https://doi.org/10.1016/j.jsg.2018.02.003
    [Google Scholar]
  6. Bronner, A., Munschy, M., Sauter, D., Carlut, J., Searle, R. and Maineult, A. (2013) Deep‐tow 3C magnetic measurement: solutions for calibration and interpretation. Geophysics, 78, J15–J23. https://doi.org/10.1190/geo2012-0214.1
    [Google Scholar]
  7. Caron, R.M., Samson, C., Straznicky, P., Ferguson, S. and Sander, L. (2014) Aeromagnetic surveying using a simulated unmanned aircraft system. Geophysical Prospecting, 62, 352–363. https://doi.org/10.1111/1365-2478.12075
    [Google Scholar]
  8. Cunningham, M., Samson, C., Wood, A. and Cook, I. (2018) Aeromagnetic surveying with a rotary‐wing unmanned aircraft system: a case study from a zinc deposit in Nash Creek, New Brunswick, Canada. Pure and Applied Geophysics, 175, 3145–3158. https://doi.org/10.1007/s00024-017-1736-2
    [Google Scholar]
  9. Davis, K., Li, Y. and Nabighian, M. (2010) Automatic detection of UXO magnetic anomalies using extended Euler deconvolution. Geophysics, 75, G13–G20. https://doi.org/10.1190/1.3375235
    [Google Scholar]
  10. Eck, C. and Imbach, B. (2012) Aerial magnetic sensing with an UAV helicopter. ISPRS – International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII‐1/C22, 81–85. https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-81-2011
  11. Elsass, P., von Eller, J.P. and Stussi, J.M. (2008) Géologie du massif du Champ du Feu et de ses abords. Eléments de notice pour la feuille géologique 307 Sélestat (No. BRGM/RP‐56088‐FR).
  12. Everett, M.E. (2013) Near‐Surface Applied Geophysics. Cambridge University Press. https://doi.org/10.1017/CBO9781139088435, pp. 34–51.
    [Google Scholar]
  13. Fassbinder, J.W.E. (2016) Magnetometry for archaeology: encyclopedia of geoarchaeology, Encyclopedia of Earth Sciences Series, 499–514.
    [Google Scholar]
  14. Funaki, M., Higashino, S.‐I., Sakanaka, S., Iwata, N., Nakamura, N., Hirasawa, N.et al., (2014) Small unmanned aerial vehicles for aeromagnetic surveys and their flights in the South Shetland Islands, Antarctica. Polar Science, 8, 342–356. https://doi.org/10.1016/j.polar.2014.07.001
    [Google Scholar]
  15. Gavazzi, B., Le Maire, P., Munschy, M. and Dechamp, A. (2016) Fluxgate vector magnetometers: A multisensor device for ground, UAV, and airborne magnetic surveys. The Leading Edge, 35, 795–797. https://doi.org/10.1190/tle35090795.1
    [Google Scholar]
  16. Gee, J.S., Cande, S., Kent, D.V., Partner, R. and Heckman, K. (2008) Mapping geomagnetic field variations with unmanned airborne vehicles. EOS, 89, 177–180.
    [Google Scholar]
  17. Gérard, A., Genter, A., Kohl, T., Lutz, P., Rose, P. and Rummel, F. (2006) The deep EGS (Enhanced Geothermal System) project at Soultz‐sous‐Forêts (Alsace, France). Geothermics, 35, 473–483. https://doi.org/10.1016/j.geothermics.2006.12.001
    [Google Scholar]
  18. Hinze, W., von Frese, R.R.B. and Saad, A.H. (2013) Gravity and Magnetic Exploration. Cambridge University Press, 215–233.
    [Google Scholar]
  19. Lardeaux, J.M., Schulmann, K., Faure, M., Janoušek, V., Lexa, O., Skrzypek, E.et al., (2014) The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. Geological Society London Special Publications, 405, 7–44. https://doi.org/10.1144/SP405.14
    [Google Scholar]
  20. Le Garzic, E., de L'Hamaide, T., Diraison, M., Géraud, Y., Sausse, J., de Urreiztieta, M.et al., (2011) Scaling and geometric properties of extensional fracture systems in the proterozoic basement of Yemen. Tectonic interpretation and fluid flow implications. Journal of Structural Geology, 33, 519–536. https://doi.org/10.1016/j.jsg.2011.01.012
    [Google Scholar]
  21. Leach, Barrie W. (1980) Aeromagnetic compensation as a linear regression problem. In: Information Linkage between Applied Mathematics and Industry. Elsevier, pp. 139–161. https://doi.org/10.1016/B978-0-12-628750-9.50017-6
    [Google Scholar]
  22. Leliak, P. (1961) Identification and evaluation of magnetic‐field sources of magnetic airborne detector equipped aircraft. IRE Transactions on Aerospace Navigational Electronics ANE‐8, 95–105. https://doi.org/10.1109/TANE3.1961.4201799
    [Google Scholar]
  23. Macharet, D., Perez‐Imaz, H., Rezeck, P., Potje, G., Benyosef, L., Wiermann, A.et al., (2016) Autonomous aeromagnetic surveys using a fluxgate magnetometer. Sensors, 16, 2169. https://doi.org/10.3390/s16122169
    [Google Scholar]
  24. Malehmir, A., Dynesius, L., Paulusson, K., Paulusson, A., Johansson, H., Bastani, M.et al., (2017) The potential of rotary‐wing UAV‐based magnetic surveys for mineral exploration: A case study from central Sweden. The Leading Edge, 36, 552–557. https://doi.org/10.1190/tle36070552.1
    [Google Scholar]
  25. Munschy, M., Boulanger, D., Ulrich, P. and Bouiflane, M. (2007) Magnetic mapping for the detection and characterization of UXO: use of multi‐sensor fluxgate 3‐axis magnetometers and methods of interpretation. Journal of Applied Geophysics, 61, 168–183. https://doi.org/10.1016/j.jappgeo.2006.06.004
    [Google Scholar]
  26. Nabighian, M.N., Grauch, V.J.S., Hansen, R.O., LaFehr, T.R., Li, Y., Peirce, J.W.et al., (2005) The historical development of the magnetic method in exploration. Geophysics, 70, 63ND. https://doi.org/10.1190/1.2133785
    [Google Scholar]
  27. Olsen, N., Tøffner‐Clausen, L., Sabaka, T.J., Brauer, P., Merayo, J.M., Jørgensen, J.L.et al., (2003) Calibration of the Ørsted vector magnetometer. Earth Planets Space, 55, 11–18.
    [Google Scholar]
  28. Pan, Q., Liu, D.‐J., Guo, Z.‐Y., Fang, H.‐F. and Feng, M.‐Q. (2016) Magnetic anomaly inversion using magnetic dipole reconstruction based on the pipeline section segmentation method. Journal of Geophysics and Engineering, 13, 242–258. https://doi.org/10.1088/1742-2132/13/3/242
    [Google Scholar]
  29. Parshin, A.V., Morozov, V.A., Blinov, A.V., Kosterev, A.N. and Budyak, A.E. (2018) Low‐altitude geophysical magnetic prospecting based on multirotor UAV as a promising replacement for traditional ground survey. Geo‐Spatial Information Science, 21, 67–74. https://doi.org/10.1080/10095020.2017.1420508
    [Google Scholar]
  30. Parvar, K., Braun, A., Layton‐Matthews, D. and Burns, M. (2017) UAV magnetometry for chromite exploration in the Samail ophiolite sequence, Oman. Journal of Unmanned Vehicle Systems, 6(1), 57–69. https://doi.org/10.1139/juvs-2017-0015
    [Google Scholar]
  31. Primdahl, F. (1979) The fluxgate magnetometer. Journal of Physics E: Scientific Instruments, 12, 241–253. https://doi.org/10.1088/0022-3735/12/4/001
    [Google Scholar]
  32. Reid, A.B. (1980) Aeromagnetic survey design. Geophysics, 45, 973–976.
    [Google Scholar]
  33. Ripka, P. (2003) Advances in fluxgate sensors. Sensors and Actuators A: Physical, 106, 8–14. https://doi.org/10.1016/S0924-4247(03)00094-3
    [Google Scholar]
  34. Roelof, V., McKay, M., Anderson, M., Johnson, R., Selfridge, B. and Bennett, J. (2007) Feasibility study for an autonomous UAV–magnetometer system. Idaho National Laboratory (INL). https://doi.org/10.2172/923485
  35. Salem, A., Ravat, D., Gamey, T.J. and Ushijima, K. (2002) Analytic signal approach and its applicability in environmental magnetic investigations. Journal of Applied Geophysics, 49, 231–244.
    [Google Scholar]
  36. Samson, C., Straznicky, P., Laliberté, J., Caron, R., Ferguson, S. and Archer, R. (2010) Designing and building an unmanned aircraft system for aeromagnetic surveying. SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 1167–1171. https://doi.org/10.1190/1.3513051
    [Google Scholar]
  37. Sherrod, B.L., Blakely, R., Lasher, J.P., Lamb, A., Mahan, S.A., Foit, F.F.et al., (2016) Active faulting on the Wallula fault zone within the Olympic‐Wallowa lineament, Washington State, USA. Geological Society of America Bulletin, 128, 1636–1659. https://doi.org/10.1130/B31359.1
    [Google Scholar]
  38. Skrzypek, E., Schulmann, K., Tabaud, A.‐S. and Edel, J.‐B. (2014) Palaeozoic evolution of the Variscan Vosges Mountains. Geological Society London Special Publications, 405, 44–75.
    [Google Scholar]
  39. Stoll, J.B. (2013) Unmanned aircraft systems for rapid near surface geophysical measurements. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL‐1/W2.
  40. Tuck, L., Samson, C., Polowick, C. and Laliberté, J. (2019) Real‐time compensation of magnetic data acquired by a single‐rotor unmanned aircraft system. Geophysical Prospecting, 67(6), 1637–1651. https://doi.org/10.1111/1365-2478.12800.
    [Google Scholar]
  41. Vidal, J. and Genter, A. (2018) Overview of naturally permeable fractured reservoirs in the central and southern upper Rhine graben: insights from geothermal wells. Geothermics, 74, 57–73. https://doi.org/10.1016/j.geothermics.2018.02.003
    [Google Scholar]
  42. Walter, C.A., Braun, A. and Fotopoulos, G. (2019) Impact of three‐dimensional attitude variations of an unmanned aerial vehicle magnetometry system on magnetic data quality. Geophysical Prospecting, 67(2), 465–479. https://doi.org/10.1111/1365-2478.12727.
    [Google Scholar]
  43. Walter, C.A., Braun, A. and Fotopoulos, G. (2020) High‐resolution unmanned aerial vehicle aeromagnetic surveys for mineral exploration targets. Geophysical Prospecting, 68, 334–349. https://doi.org/10.1111/1365-2478.12914
    [Google Scholar]
  44. Wells, M. (2008) Attenuating Magnetic Interference in a UAV System (Text). Master of Applied Science, Carleton University.
    [Google Scholar]
  45. Wood, A., Cook, I., Doyle, B., Cunningham, M. and Samson, C. (2016) Experimental aeromagnetic survey using an unmanned air system. The Leading Edge, 35, 270–273. https://doi.org/10.1190/tle35030270.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12991
Loading
/content/journals/10.1111/1365-2478.12991
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Acquisition; Magnetics; Potential field

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error