1887
Volume 68, Issue 7
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Obtaining geological information from seismic data motivates researchers to innovate and improve seismic wave processing tools. Polarization‐based methods have received much attention regarding their ability to discriminate between different phases of the seismic wave based on polarity. Combining the intuitive definition of polarity in the frequency domain (monochromatic waves) with the non‐stationary properties provided by time‐domain methods, time‐frequency approaches are attracting widespread interest because they localize the information extracted from the seismic waves in the joint time and frequency domains. Due to the lack of high‐resolution time‐frequency maps, the time‐frequency polarization approach was not able to resolve specific temporal polarity changes in the seismic signal. The main objective of this study was to devise a robust time‐frequency‐based polarization filtering method using high‐resolution polarization attributes obtained directly from the sparse time‐frequency map without using Eigen analysis or analytic signals. The method proposed here utilizes a computationally effective sparsity‐based adaptive S‐transform to obtain a high‐resolution polarization map of an inherently non‐stationary seismogram for the entire frequency content of the signal at different times. The superiority of the proposed method over the S‐transform method was verified using synthetic and real data sets to calculate the polarization attributes in the time‐frequency domain and separate the Rayleigh waves from the seismogram.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12994
2020-07-03
2024-04-25
Loading full text...

Full text loading...

References

  1. Anant, K.S. and Dowla, F.U. (1997) Wavelet transform methods for phase identification in three‐component seismograms. Bulletine of the Seismological Society of America, 87(6), 1598–1612.
    [Google Scholar]
  2. Bataille, K. and Chiu, J. (1991) Polarization analysis of high‐frequency, three‐component seismic data. Bulletine of the Seismological Society of America, 81(2), 622–642.
    [Google Scholar]
  3. Chen, W., Chen, Y. and Cheng, Z. (2017a) Seismic time‐frequency analysis using an improved empirical mode decomposition algorithm. Journal of Seismic Exploration, 26(4), 367–380.
    [Google Scholar]
  4. Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y. (2017b) Multiple‐reflection noise attenuation using adaptive randomized‐order empirical mode decomposition. IEEE Geoscience and Remote Sensing Letters, 14(1), 18–22.
    [Google Scholar]
  5. Cheng, Z., Chen, W., Chen, Y., Liu, Y., Liu, W., Li, H.et al. (2016) Application of bi‐Gaussian S‐transform in high‐resolution seismic time‐frequency analysis. Interpretation, 5(1), SC1–SC7.
    [Google Scholar]
  6. Christoffersson, A., Husebye, E.S. and Ingate, S.F. (1988) Wavefield decomposition using ML‐probabilities in modelling single‐site 3‐component records. Geophysical Journal International, 93(2), 197–213. https://doi.org/10.1111/j.1365-246X.1988.tb01996.x
    [Google Scholar]
  7. Claassen, J.P. (2006) Robust bearing estimation for three‐component stations. Pure and applied geophysics, 158(1–2), 349–374. https://doi.org/10.1007/pl00001163
    [Google Scholar]
  8. Del Gaudio, V. (2017) Instantaneous polarization analysis of ambient noise recordings in site response investigations. Geophysical Journal International, 210(1), 443–464. https://doi.org/10.1093/gji/ggx175
    [Google Scholar]
  9. Diallo, M.S., Kulesh, M., Holschneider, M. and Scherbaum, R. (2005) Instantaneous polarization attributes in the time‐frequency domain and wavefield separation. Geophysical Prospecting, 53(5), 723–731. https://doi.org/10.1111/j.1365-2478.2005.00500.x
    [Google Scholar]
  10. Donoho, D.L. (2006) Compressed sensing. IEEE Trans Inform Theory, 52, 1289–1306. https://doi.org/10.1109/TIT.2006.871582
    [Google Scholar]
  11. Du, Z., Foulger, G.R. and Mao, W. (2000) Noise reduction for broad‐band, three‐component seismograms using data‐adaptive polarization filters. Geophysical Journal International, 141(3), 820–828. https://doi.org/10.1046/j.1365-246X.2000.00156.x
    [Google Scholar]
  12. Gholami, A. (2013) Sparse time‐frequency decomposition and some applications. IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3598–3604. https://doi.org/10.1109/TGRS.2012.2220144
    [Google Scholar]
  13. Herrmann, R.B. (2013) Computer programs in seismology: an evolving tool for instruction and research. Seismological Research Letters, 84(6), 1081–1088. https://doi.org/10.1785/0220110096
    [Google Scholar]
  14. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q.et al. (1998) The empirical mode decomposition and the Hubert spectrum for nonlinear and non‐stationary time series analysis. Proceedings of the Royal Society of Londen. Series A: mathematical, Physical and Engineering Sciences, 454(1971), 903–997.
    [Google Scholar]
  15. Jones, D.L. and Parks, T.W. (1990) A high resolution data‐adaptive time‐frequency representation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(12), 2127–2135. https://doi.org/10.1109/29.61539
    [Google Scholar]
  16. Jurkevics, A. (1988) Polarization analysis of three‐component array data. Bulletine of the seismological society of America, 78(5), 1725–1743.
    [Google Scholar]
  17. Labonne, C., Sèbe, O. and Gaffet, S. (2016) Seismic wavefield polarization – part I: describing an elliptical polarized motion, a review of motivations and methods. In E3S Web of Conferences, 12, 06001. https://doi.org/10.1051/e3sconf/20161206001
    [Google Scholar]
  18. Lilly, J.M. and Park, J. (1995) Multiwavelet spectral and polarization analyses of seismic records. Geophysical Journal International, 122(3), 1001–1021. https://doi.org/10.1111/j.1365-246X.1995.tb06852.x
    [Google Scholar]
  19. Liu, W., Cao, S. and Chen, Y. (2016) Applications of variational mode decomposition in seismic time‐frequency analysis. Geophysics, 81(5), V365–V378. https://doi.org/10.1190/GEO2015-0489.1
    [Google Scholar]
  20. Loris, I., Nolet, G., Daubechies, I. and Dahlen, F.A. (2007) Tomographic inversion using ℓ1‐norm regularization of wavelet coefficients. Geophysical Journal International, 170(1), 359–370. https://doi.org/10.1111/j.1365-246X.2007.03409.x
    [Google Scholar]
  21. Montalbetti, J.F. and Kanasewich, E.R. (1970) Enhancement of teleseismic body phases with a polarization filter. Geophysical Journal International, 21(2), 119–129. https://doi.org/10.1111/j.1365-246X.1970.tb01771.x
    [Google Scholar]
  22. Morozov, I.B. (1996) Instantaneous polarization attributes and directional filtering. Geophysics, 61(3), 872–881. https://doi.org/10.1190/1.1444012
    [Google Scholar]
  23. O'Neill, J.C., Flandrin, P. and Williams, W.J. (1999) On the existence of discrete Wigner distributions. IEEE Signal Processing Letters, 6(12), 304–306. https://doi.org/10.1109/97.803429
    [Google Scholar]
  24. Pinnegar, C.R. (2006) Polarization analysis and polarization filtering of three‐component signals with the time‐frequency. Geophysical Journal International, 165(2), 596–606. https://doi.org/10.1111/j.1365-246X.2006.02937.x
    [Google Scholar]
  25. Pinnegar, C.R. and Mansinha, L. (2003) The S‐transform with windows of arbitrary and varying shape. Geophysics, 68(1), 381–385. https://doi.org/10.1190/1.1543223
    [Google Scholar]
  26. Roberts, R.G., Christoffersson, A. and Cassidy, F. (1989) Real‐time event detection, phase identification and source location estimation using single station three‐component seismic data. Geophysical Journal International, 97(3), 471–480. https://doi.org/10.1111/j.1365-246X.1989.tb00517.x
    [Google Scholar]
  27. Samson, J.C. (1977) Matrix and Stokes vector representations of detectors for polarized waveforms: theory, with some applications to teleseismic waves. Geophysical Journal International, 51(3), 583–603. https://doi.org/10.1111/j.1365-246X.1977.tb04208.x
    [Google Scholar]
  28. Samson, J.C. and Olson, J.V. (1980) Some comments on the descriptions of the polarization states of waves. Geophysical Journal International, 61(1), 115–129. https://doi.org/10.1111/j.1365-246X.1980.tb04308.x
    [Google Scholar]
  29. Sattari, H. (2017) High‐resolution seismic complex trace analysis by adaptive fast sparse S‐transform. Geophysics, 82(1), V51–V67. https://doi.org/10.1190/geo2015-0425.1
    [Google Scholar]
  30. Sattari, H., Gholami, A. and Siahkoohi, H.R. (2013) Seismic data analysis by adaptive sparse time‐frequency decomposition. Geophysics, 78(5), V207–V217. https://doi.org/10.1190/geo2012-0550.1
    [Google Scholar]
  31. Schimmel, M. and Gallart, J. (2005) The inverse S‐transform in filters with time‐frequency localization. IEEE Transactions on Signal Processing, 53(11), 4417–4422. https://doi.org/10.1109/TSP.2007.896050
    [Google Scholar]
  32. Schimmel, M. and Gallart, J. (2003) The use of instantaneous polarization attributes for seismic signal detection and image enhancement. Geophysical Journal International, 155(2), 653–668. https://doi.org/10.1046/j.1365-246X.2003.02077.x
    [Google Scholar]
  33. Schimmel, M. and Gallart, J. (2004) Degree of polarization filter for frequency‐dependent signal enhancement through noise suppression. Bulletine of the Seismological Society of America, 94(3), 1016–1035. https://doi.org/10.1785/0120030178
    [Google Scholar]
  34. Schimmel, M., Stutzmann, E., Ardhuin, F. and Gallart, J. (2011) Polarized Earth's ambient microseismic noise. Geochemistry, Geophysics, Geosystems, 12(7). https://doi.org/10.1029/2011GC003661
    [Google Scholar]
  35. Shalev‐Shwartz, S. and Tewari, A. (2009) Stochastic methods for l1‐regularized loss minimization. Journal of Machine Learning Research, 12(Jun), 1865–1892.
    [Google Scholar]
  36. Stockwell, R.G., Mansinha, L. and Lowe, R.P. (1996) Localization of the complex spectrum: the S transform. IEEE Transactions on Signal Processing, 44(4), 998–1001. https://doi.org/10.1109/78.492555
    [Google Scholar]
  37. Tibshirani, R. (2018) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 73(3), 273–282. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
    [Google Scholar]
  38. Torres, M.E., Colominas, M.A., Schlotthauer, G. and Flandrin, P. (2011) A complete ensemble empirical mode decomposition with adaptive noise. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4144–4147. IEEE.
  39. Vidale, J.E. (1986) Complex polarization analysis of particle motion. Bulletine of the Seismological Society of America, 76(5), 1393–1405.
    [Google Scholar]
  40. Wu, G., Fomel, S. and Chen, Y. (2018) Data‐driven time–frequency analysis of seismic data using non‐stationary Prony method. Geophysical Prospecting, 66(1), 85–97. https://doi.org/10.1111/1365-2478.12530
    [Google Scholar]
  41. Wu, X. and Liu, T. (2010) Seismic spectral decomposition and analysis based on Wigner‐Ville distribution for sandstone reservoir characterization in west Sichuan depression. Journal of Geophysics Engineering, 7(2), 126–134. https://doi.org/10.1088/1742-2132/7/2/002
    [Google Scholar]
  42. Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise‐assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1–41. https://doi.org/10.1142/S1793536909000047
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12994
Loading
/content/journals/10.1111/1365-2478.12994
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error