1887
Volume 69, Issue 1
  • E-ISSN: 1365-2478
PDF

Abstract

ABSTRACT

The phase and group velocity surfaces are essential for wave propagation in anisotropic media. These surfaces have certain features that, especially, for shear waves result in complications for modelling and inversion of recorded wavefields. To analyse wave propagation in an anisotropic model, it is important to identify these features in both the phase and group domains. We propose few characteristics for this analysis: the energy flux angle, decomposed in the polar and azimuth angle correction angles and enhancement factor, which is able to characterize both singularity points and triplication zones. The very simple equation that controls the triplications is derived in the phase domain. The proposed characteristics are illustrated for elastic and acoustic anisotropic models of different symmetry classes.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13030
2020-12-12
2021-01-18
Loading full text...

Full text loading...

/deliver/fulltext/gpr/69/1/gpr13030.html?itemId=/content/journals/10.1111/1365-2478.13030&mimeType=html&fmt=ahah

References

  1. Abedi, M.M., Stovas, A. and Ivanov, Yu. (2019) Acoustic wave propagation in orthorhombic media: phase velocity, group velocity, and moveout approximations. Geophysics84(6), C269–C279.
    [Google Scholar]
  2. Achenbach, J.D. (1973) Wave Propagation in Elastic Solids. North Holland Publishing Company.
    [Google Scholar]
  3. Alkhalifah, T. (2003) An acoustic wave equation for orthorhombic anisotropy. Geophysics, 68, 1169–1172.
    [Google Scholar]
  4. Alshits, V.I. and Lothe, J. (1979) Elastic waves in triclinic crystals. IL Topology of polarization fields and some general theorems. Soviet Physics, Crystallography, 24, 393–398 (in Russian).
    [Google Scholar]
  5. Alshits, V.I. and Lothe, J. (2004) Some basic properties of bulk elastic waves in anisotropic media. Wave Motion, 40, 297–313.
    [Google Scholar]
  6. Alshits, V.I. and Lothe, J. (2006) Acoustic axes in trigonal crystals. Wave Motion, 43, 177–192.
    [Google Scholar]
  7. Alshits, V.I., Sarychev, A.V. and Shuvalov, A.L. (1985) Classification of degeneracies and analysis of their stability in the theory of elastic waves in crystals. Soviet Journal of the Experimental and Theoretical Physics, 62, 531–539 (in Russian).
    [Google Scholar]
  8. Arnold, V.I. (1989) Mathematical Methods of Classical Mechanics (2nd ed). Springer.
    [Google Scholar]
  9. Arnold, V.I., Gusein‐Zade, S.M. and Varchenko, A.N. (1987) Singularities of Differentiable Maps (Vol. 1). Birkhauser.
    [Google Scholar]
  10. Auld, B.A. (1973) Acoustic Fields and Waves in Solids (Vols I and II). John Wiley.
    [Google Scholar]
  11. Ben‐Menahem, A. and Sena, A.G. (1990) Seismic source theory in stratified anisotropic media. Journal of Geophysical Research, 95, B10, 15395–15427.
    [Google Scholar]
  12. Becker, T. and Weispfenning, V. (1993) Gröbner Bases: A Computational Approach to Commutative Algebra. Springer‐Verlag.
    [Google Scholar]
  13. Červený, V. (1972) Seismic rays and ray intensities in inhomogeneous anisotropic media. Geophysical Journal of the Royal Astronomical Society, 29, 1–13.
    [Google Scholar]
  14. Červený, V. (2001) Seismic Ray Theory. Cambridge: Cambridge University Press.
    [Google Scholar]
  15. Červený, V. (2002) Fermat's variational principle for anisotropic inhomogeneous media. Studia Geophysica Et Geodaetica, 46, 567–588.
    [Google Scholar]
  16. Chapmen, C.H. (2004) Fundamentals of Seismic Wave Propagation. Cambridge, New York: Cambridge University Press.
    [Google Scholar]
  17. Crampin, S. and Yedlin, M. (1981) Shear‐wave singularities of wave propagation in anisotropic media. Journal of Geophysics, 49, 43–46.
    [Google Scholar]
  18. Crampin, S. (1991) Effects of point singularities on shear‐wave propagation in sedimentary basins. Geophysical Journal International, 107(3), 531–543.
    [Google Scholar]
  19. Darinskij, B.M. (1994) Acoustic axes in crystals. Crystallography Reports, 39(5), 697–703.
    [Google Scholar]
  20. Dellinger, J. (1991) Anisotropic seismic wave propagation. PhD thesis, Stanford University.
  21. Dubrovin, B.A, Fomenko, A.T. and Novikov, S.P. (1984) Modern Geometry – Methods and Applications. Part I. The Geometry of Surfaces, Transformation Groups, and Fields (2nd ed). New York: Springer‐Verlag.
    [Google Scholar]
  22. Duda, A. (2006) Specific propagation directions of acoustic waves for piezoelectric and non‐piezoelectric media. Acoustic Journal, 52(1), 43–50.
    [Google Scholar]
  23. Every, A.G. (1986) Formation of phonon‐focusing caustics in crystals. Physical Review B, 34, 2852–2862.
    [Google Scholar]
  24. Every, A.G. and Kim, K.Y. (1994) Time‐domain dynamic response functions of elastically anisotropic solids. Journal of the Acoustical Society of America, 95, 2505–2516.
    [Google Scholar]
  25. Fedorov, F.I. (1968) Theory of Elastic Waves. New York, Plenum.
    [Google Scholar]
  26. Fryer, G.J. and Frazer, N.L (1987) Seismic waves in stratified anisotropic media—II. Elastodynamic eigensolutions for some anisotropic systems. Geophysical Journal of the Royal Astronomical Society, 91, 73–101.
    [Google Scholar]
  27. Goldin, S.V. (2013) Physical interpretation of degeneracies of the Christoffel equation in the theory of anisotropic elasticity. Geophysical Prospecting, 61, 1084–1098.
    [Google Scholar]
  28. Grechka, V. (2015) Shear‐wave group‐velocity surfaces in low‐symmetry anisotropic media. Geophysics, 80, C1–C7.
    [Google Scholar]
  29. Grechka, V. (2017) Algebraic degree of a general group‐velocity surfaces in low‐symmetry anisotropic media. Geophysics, 82, WA45–WA53.
    [Google Scholar]
  30. Grechka, V. and Obolentseva, I.R. (1993) Geometrical structure of shear wave surfaces near singularity directions in anisotropic media. Geophysical Journal International, 115, 609–616.
    [Google Scholar]
  31. Hayes, M. (1998) Acoustic axes for elastic waves in crystals: theory and applications. Proceedings of the Royal Society A, 454, 2323–2346.
    [Google Scholar]
  32. Helbig, K. (1993) Longitudinal directions in media of arbitrary anisotropy. Geophysics, 58(5), 680–691.
    [Google Scholar]
  33. Helbig, K. (1994) Foundations of Anisotropy for Exploration Seismics. New York: Pergamon.
    [Google Scholar]
  34. Ivanov, Yu. (2019) On occurrence of point singularities in orthorhombic media. Geophysical Prospecting, 67, 2287–2297.
    [Google Scholar]
  35. Ivanov, Yu. and Stovas, A. (2017) S‐waves singularities in tilted orthorhombic media. Geophysics, 82(4), WA11–WA21.
    [Google Scholar]
  36. Jaeken, J.W. and Cottenier, S. (2016) Solving the Christoffel equation: phase and group velocities. Computer Physics Communications, 11, 1–13.
    [Google Scholar]
  37. Kendall, J.M. and Thomson, C.J. (1989) A comment on the form of the geometrical spreading equation, with some numerical examples of seismic ray tracing in inhomogeneous, anisotropic media. Geophysical Journal International, 99, 401–413.
    [Google Scholar]
  38. Khatkevich, A.G. (1963) Acoustic axes in crystals. Soviet Physics, Crystallography, 7, 601–604 (in Russian).
    [Google Scholar]
  39. Khatkevich, A.G. (1977) Classification of crystals by acoustic properties. Soviet Physics, Crystallography, 22, 701–705.
    [Google Scholar]
  40. Klimeš, L. (2002) Relation of the wave‐propagation metric tensor to the curvatures of the slowness and ray‐velocity surfaces. Studia Geophysica Et Geodaetica46, 589–597.
    [Google Scholar]
  41. Korn, G.A. and Korn, T.M. (1968) Mathematical Handbook for Scientists and Engineers. New York: McGraw‐Hill Book Co.
    [Google Scholar]
  42. Maris, H.J. (1971) Enhancement of heat pulses in crystals due to elastic anisotropy. The Journal of the Acoustical Society of America50 (no.3, part 2), 812–818.
    [Google Scholar]
  43. Masmoudi, N. and Alkhalifah, T. (2016) A new parametrization for waveform inversion in acoustic orthorhombic media. Geophysics81, R157–R171.
    [Google Scholar]
  44. Musgrave, M.J.P. (1970) Crystal Acoustics. London: Holden‐Day.
    [Google Scholar]
  45. Musgrave, M.J.P. (1985) Acoustic axes in orthorhombic media. Proceedings of the Royal Society A, 401, 131–143.
    [Google Scholar]
  46. Norris, A.N. (2004) Acoustic axes in elasticity. Wave Motion, 40, 315–328.
    [Google Scholar]
  47. O'Neill, B. (2006) Elementary Differential Geometry. Elsevier.
    [Google Scholar]
  48. Oh, J. and Alkhalifah, T. (2016) The scattering potential of partial derivative wavefields in 3D elastic orthorhombic media: an inversion prospective. Geophysical Journal International, 206, 1740–1760.
    [Google Scholar]
  49. Payton, R.G. (1983) Elastic Wave Propagation in Transversely Isotropic Media. Martinus Nijhoff Publ.
  50. Roganov, Yu. and Stovas, A. (2010) On shear wave triplications in a multi‐layered VTI medium. Geophysical Prospecting, 58(4), 549–559.
    [Google Scholar]
  51. Roganov, Yu., Stovas, A. and Roganov, V. (2019) Properties of acoustic axes in triclinic media. Geophysical Journal, 41(3), 3–17.
    [Google Scholar]
  52. Schoenberg, M. and Helbig, K. (1997) Orthorhombic media: modeling elastic wave behavior in a vertically fractured earth. Geophysics, 62, 1954–1974.
    [Google Scholar]
  53. Sharma, M.D. (2002) Group velocity along general direction in a general anisotropic medium. International Journal of Solids and Structures, 39, 3277–3288.
    [Google Scholar]
  54. Shuvalov, A.L. (1998) Topological features of the polarization fields of plane acoustic waves in anisotropic media. Proceedings of the Royal Society A, 454, 2911–2947.
    [Google Scholar]
  55. Shuvalov, A.L. and Every, A.G. (1996) Curvature of acoustic slowness surface of anisotropic solids near symmetry axes. Physical Review 5, 53(14), 906–916.
    [Google Scholar]
  56. Shuvalov, A.L. and Every, A.G. (1997) Shape of the acoustic slowness surface of anisotropic solids near points of conical degeneracy. Journal of the Acoustical Society of America101, 2381–2383.
    [Google Scholar]
  57. Stovas, A. (2015) Azimuthally dependent kinematic properties of orthorhombic media. Geophysics, 80(6), C107–C122.
    [Google Scholar]
  58. Stovas, A. (2016) Vertical on‐axis triplications in orthorhombic media. Journal of Geophysics and Engineering13, 875–879.
    [Google Scholar]
  59. Stovas, A., Roganov, Yu. and Roganov, V. (2019). Enhancement factor in anisotropic mediaGeoinformatics, Kiev.
  60. Thomsen, L. and Dellinger, J. (2003) On shear‐wave triplication in transversely isotropic media. Journal of Applied Geophysics, 54, 289–296.
    [Google Scholar]
  61. Vavryčuk, V. (1999) Properties of S waves near a kiss singularity: a comparison of exact and ray solutions. Geophysical Journal International, 138, 581–589.
    [Google Scholar]
  62. Vavryčuk, V. (2001) Ray tracing in anisotropic media with singularities. Geophysical Journal International, 145, 265–276.
    [Google Scholar]
  63. Vavryčuk, V. (2003a) Generation of triplications in transversely isotropic media. Physical Review B, 68, 054107.
    [Google Scholar]
  64. Vavryčuk, V. (2003b) Parabolic lines and caustics in homogeneous weakly anisotropic media. Geophysical Journal International, 152, 318–334.
    [Google Scholar]
  65. Vavryčuk, V. (2003c) Behavior of rays near singularities in anisotropic media. Physical Review B, 67, 054105.
    [Google Scholar]
  66. Vavryčuk, V. (2005) Acoustic axes in triclinic anisotropy. Journal of the Acoustical Society of America, 118, 647–653.
    [Google Scholar]
  67. Vavryčuk, V. (2006) Calculation of the slowness vector from the ray vector in anisotropic media. Proceedings of the Royal Society A, 462, 883–896.
    [Google Scholar]
  68. Vavryčuk, V. (2013) Inversion for weak triclinic anisotropy from acoustic axes. Wave Motion, 50, 1271–1282.
    [Google Scholar]
  69. Wang, L. (1995) Determination of the ray surface and recovery of elastic constants of anisotropic elastic media: a direct and inverse approach. Journal of Physics: Condensed Matter, 7, 3863–3880.
    [Google Scholar]
  70. Wolfe, J.P. (1995) Acoustic wavefronts in crystalline solids. Physics Today, 48, 34–40.
    [Google Scholar]
  71. Wolfe, J.P. (1998) Imaging Phonons. Acoustic Wave Propagation in Solids. Cambridge: Cambridge University Press.
    [Google Scholar]
  72. Xu, S. and Stovas, A. (2018) Triplications on traveltime surface for pure and converted wave modes in elastic orthorhombic media. Geophysical Journal International, 215(1), 677–694.
    [Google Scholar]
  73. Xu, S. and Stovas, A. (2019a) Singularity point in effective orthorhombic medium computed from zero‐ and infinite‐frequency limit. Geophysical Journal International, 217(1), 319–330.
    [Google Scholar]
  74. Xu, S. and Stovas, A. (2019b) The kinematics of S waves in acoustic orthorhombic media. Geophysical Prospecting, 67(8), 1983–2002.
    [Google Scholar]
  75. Zhou, B. and Greenhalgh, S. (2004) On the computation of elastic wave group velocities for a general anisotropic medium. Journal of Geophysics and Engineering, 1, 205–215.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13030
Loading
/content/journals/10.1111/1365-2478.13030
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Anisotropy , Modelling and Velocity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error