1887
Volume 69, Issue 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We present a new ray bending approach, referred to as the Eigenray method, for solving two‐point boundary‐value kinematic and dynamic ray tracing problems in 3D smooth heterogeneous general anisotropic elastic media. The proposed Eigenray method is aimed to provide reliable stationary ray path solutions and their dynamic characteristics, in cases where conventional initial‐value ray shooting methods, followed by numerical convergence techniques, become challenging. The kinematic ray bending solution corresponds to the vanishing first traveltime variation, leading to a stationary path between two fixed endpoints (Fermat's principle), and is governed by the nonlinear second‐order Euler–Lagrange equation. The solution is based on a finite‐element approach, applying the weak formulation that reduces the Euler–Lagrange second‐order ordinary differential equation to the first‐order weighted‐residual nonlinear algebraic equation set. For the kinematic finite‐element problem, the degrees of freedom are discretized nodal locations and directions along the ray trajectory, where the values between the nodes are accurately and naturally defined with the Hermite polynomial interpolation. The target function to be minimized includes two essential penalty (constraint) terms, related to the distribution of the nodes along the path and to the normalization of the ray direction. We distinguish between two target functions triggered by the two possible types of stationary rays: a minimum traveltime and a saddle‐point solution (due to caustics). The minimization process involves the computation of the global (all‐node) traveltime gradient vector and the traveltime Hessian matrix. The traveltime Hessian is used for the minimization process, analysing the type of the stationary ray, and for computing the geometric spreading of the entire resolved stationary ray path. The latter, however, is not a replacement for the dynamic ray tracing solution, since it does not deliver the geometric spreading for intermediate points along the ray, nor the analysis of caustics. Finally, we demonstrate the efficiency and accuracy of the proposed method along three canonical examples.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13052
2020-12-12
2021-01-18
Loading full text...

Full text loading...

References

  1. Albareda, G., Bofill, J., Moreira, I., Quapp, W. and Rubio‐Martinez, J. (2018) Exploring potential energy surfaces with gentlest ascent dynamics in combination with the shrinking dimer method and Newtonian dynamics. Theoretical Chemistry Accounts, 137(6), article 73.
    [Google Scholar]
  2. Arnold, V. (1989) Mathematical Methods of Classical Mechanics, 2nd edition. Berlin/Heidelberg/New York: Springer‐Verlag.
    [Google Scholar]
  3. Bathe, K. (2014) Finite Element Procedures in Engineering Analysis. Prentice‐Hall Inc.
    [Google Scholar]
  4. Beydoun, W. and Keho, T. (1987) The paraxial ray method. Geophysics, 52(12), 1639–1653.
    [Google Scholar]
  5. Bleistein, N., Cohen, J. and Stockwell, J. (2001) Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. New York: Springer Publishing Co.
    [Google Scholar]
  6. Bona, A. and Slawinski, M. (2003) Fermat's principle for seismic rays in elastic media. Journal of Applied Geophysics, 54(3–4), 445–451.
    [Google Scholar]
  7. Bona, A., Slawinski, M. and Smith, P. (2009) Ray tracing by simulated annealing: bending method. Geophysics, 74(2), T25–T32.
    [Google Scholar]
  8. Bulant, P. (1996) Two‐point ray tracing in 3‐D. Pure and Applied Geophysics, 148(3–4), 421–447.
    [Google Scholar]
  9. Bulant, P. (2002) Sobolev scalar products in the construction of velocity models: application to model Hess and to SEG/EAGE salt model. Pure and Applied Geophysics, 159(7–8), 1487–1506.
    [Google Scholar]
  10. Bulant, P. and Klimeš, L. (1999) Interpolation of ray‐theory travel times within ray cells. Geophysical Journal International, 139(2), 273–282.
    [Google Scholar]
  11. Burden, R. and Faires, D. (2005) Numerical Analysis. Thomson Higher Education, 130–137.
    [Google Scholar]
  12. Byun, B., Corrigan, D. and Gaider, J. (1989) Anisotropic velocity analysis for lithology discrimination. Geophysics, 54(12), 1566–1574.
    [Google Scholar]
  13. Cao, J., Hu, J. and Wang, H. (2017) Traveltime computation in TI media using Fermat's principle fast marching. EAGE 79th Conference and Technical Exhibition, Expanded Abstract, https://doi.org/10.3997/2214-4609.201700670.
  14. Casasanta, L., Drufuca, G., Andreoletti, C. and Panizzardi, J. (2008) 3D anisotropic ray tracing by raypath optimization. SEG International Exposition and 78th Annual Meeting, Expanded Abstract, 2161–2165.
  15. Červený, V. (2000) Seismic Ray Theory. Cambridge University Press.
    [Google Scholar]
  16. Červený, V. (2002a) Fermat's variational principle for anisotropic inhomogeneous media. Studia Geophysica et Geodaetica, 46(3), 567–588.
    [Google Scholar]
  17. Červený, V. (2002b) Fermat's variational principle for anisotropic inhomogeneous media, SW3D (seismic waves in complex 3D structures), report11, 211–236, http://sw3d.mff.cuni.cz/papers/r11vc1.htm.
  18. Červený, V., Popov, M. and Pšenčík, I. (1982) Computation of wave fields in inhomogeneous media – Gaussian beam approach. Geophysical Journal International, 70(1), 109–128.
    [Google Scholar]
  19. Chapman, C. (2004) Fundamentals of Seismic Wave Propagation. Cambridge University Press.
    [Google Scholar]
  20. Chapman, C. and Drummond, R. (1982) Body‐wave seismograms in inhomogeneous media using Maslov asymptotic theory. Bulletin of Seismological Society of America, 72, S227–S317.
    [Google Scholar]
  21. Cores, D., Fung, G. and Michelena, R. (2000) A fast and global two‐point low‐storage optimization technique for tracing rays in 2D and 3D isotropic media. Journal of Applied Geophysics, 45(4), 273–287.
    [Google Scholar]
  22. Dellinger, J. (1991) Anisotropic seismic wave propagation: PhD Thesis, Stanford University, Stanford, CA (http://sepwww.stanford.edu/theses/sep69/).
    [Google Scholar]
  23. Ecoublet, P., Singh, S., Chapman, C. and Jackson, G. (2002) Bent‐ray traveltime tomography and migration without ray racing. Geophysical Journal International, 149(3), 633–645.
    [Google Scholar]
  24. Ettrich, N. and Gajewski, D. (1996) Wave front construction in smooth media for prestack depth migration. Pure and Applied Geophysics, 148(3–4), 481–502.
    [Google Scholar]
  25. Farra, V. (1992) Bending method revisited: a Hamiltonian approach. Geophysical Journal International, 109(1), 138–150.
    [Google Scholar]
  26. Farra, V. (1993) Ray tracing in complex media. Journal of Applied Geophysics, 136(1–2), 55–73.
    [Google Scholar]
  27. Farra, V. (2004) Improved first‐order approximation of group velocities in weakly anisotropic media. Studia Geophysica et Geodaetica, 48, 199–213.
    [Google Scholar]
  28. Farra, V. and Pšenčík, I. (2013) Moveout approximations for P‐ and SV waves in VTI media. Geophysics, 78(5), WC81–WC92.
    [Google Scholar]
  29. Farra, V., Virieux, J. and Madariaga, R. (1989) Ray perturbation for interfaces. Geophysical Journal International, 99(2), 377–390.
    [Google Scholar]
  30. Fedorov, F. (1968) Theory of Elastic Waves in Crystals. Plenum Press: New York.
    [Google Scholar]
  31. Galerkin, B. (1915) On electrical circuits for the approximate solution of the Laplace equation. Vestnik Inzheneroff, 19, 897–908 (in Russian).
    [Google Scholar]
  32. Gao, W., Leng, J. and Zhou, X. (2015) An iterative minimization formulation for saddle point search. SIAM Journal on Numerical Analysis, 53(4), 786–1805.
    [Google Scholar]
  33. Gelfand, M. and Fomin, S. (2000) Calculus of Variations. Reprinted by Dover, originally published by Prentice Hall, New Jersey, 1963.
    [Google Scholar]
  34. Gibson, R. (1999) Ray tracing by wavefront construction in 3‐D, anisotropic media: Eos transactions, American Geophysical Union, 80, F696.
    [Google Scholar]
  35. Gibson, R., Sena, A. and Toksöz, M. (1991) Paraxial ray tracing in 3d inhomogeneous, anisotropic media. Geophysical Prospecting, 39(4), 473–504.
    [Google Scholar]
  36. Gjøystdal, H., Iversen, E., Lecomte, I., Vinje, V. and Åstebøl, K. (2002) Review of ray theory applications in modeling and imaging of seismic data. Studia Geophysica et Geodaetica, 46(2), 113–164.
    [Google Scholar]
  37. Goldin, S. (1986) Seismic Traveltime Inversion. Tulsa: SEG. ISBN 978‐0‐93183‐038‐9.
    [Google Scholar]
  38. Grechka, V. and McMechan, G. (1996) 3D two‐point ray tracing for heterogeneous, weakly transversely isotropic media. Geophysics, 61(6), 1883–1894.
    [Google Scholar]
  39. Grechka, V. (2017) Algebraic degree of a general group velocity surface. Geophysics, 82(4), WA45–Wa53.
    [Google Scholar]
  40. Hildebrand, F. (1987) Introduction to Numerical Analysis.Dover.
    [Google Scholar]
  41. Hovem, J. and Dong, H. (2019) Understanding ocean acoustics by Eigenray analysis. Journal of Marine Science and Engineering, 7(4), paper 118, 1–12. https://doi.org/10.3390/jmse7040118.
    [Google Scholar]
  42. Huang, X., West, G. and Kendall, J. (1998) A Maslov–Kirchhoff seismogram method. Geophysical Journal International, 132(3), 595–602.
    [Google Scholar]
  43. Hughes, T. (2000) The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Prentice‐Hall Inc.
    [Google Scholar]
  44. Julian, B. and Gubbins, D. (1977) Three‐dimensional seismic ray tracing. Journal of Geophysics, 43, 95–113.
    [Google Scholar]
  45. Koren, Z. and Ravve, I. (2018a) Eigenray tracing in 3D heterogeneous media. EAGE 80th Conference and Technical Exhibition, Expanded Abstract, https://doi.org/10.3997/2214-4609.201801325.
  46. Koren, Z. and Ravve, I. (2018b) Eigenray Tracing in 3D heterogeneous anisotropic media using finite element method. 18th International Workshop on Seismic Anisotropy, Extended Abstracts.
  47. Koren, Z. and Ravve, I. (2020a) Eigenrays in 3D heterogeneous anisotropic media. Part I – Kinematics, variational formulation: arXiv:2003.09406.
  48. Koren, Z. and Ravve, I. (2020b) Eigenrays in 3D heterogeneous anisotropic media. Part II – Kinematics, validation of the Lagrangian. arXiv:2003. 09407.
  49. Koren, Z. and Ravve, I. (2020c) Eigenrays in 3D heterogeneous anisotropic media. Part III – Kinematics, finite‐element implementation. arXiv:2003.09408.
  50. Koren, Z. and Ravve, I. (2020d) Eigenray in 3D heterogeneous general anisotropic media: kinematics. EAGE 82nd Conference and Technical Exhibition, Expanded Abstract.
  51. Krebes, D. (2019) Seismic Wave Theory. Cambridge University Press.
    [Google Scholar]
  52. Kumar, D., Sen, M. and Ferguson, R. (2004) Traveltime calculation and prestack depth migration in tilted transversely isotropic media. Geophysics, 69(1), 37–44.
    [Google Scholar]
  53. Lai, H., Gibson, R. and Lee, K. (2009) Quasi‐shear wave ray tracing by wavefront construction in 3‐D, anisotropic media. Journal of Applied Geophysics, 69(2), 82–95.
    [Google Scholar]
  54. Lambaré, G., Lucio, P. and Hanyga, A. (1996) Two‐dimensional multivalued traveltime and amplitude maps by uniform sampling of a ray field. Geophysical Journal International, 125(2), 584–598.
    [Google Scholar]
  55. Leidenfrost, A., Ettrich, N., Gajewski, D. and Kosloff, D. (1999) Comparison of six different methods for calculating travel times. Geophysical Prospecting, 47(3), 269–237.
    [Google Scholar]
  56. Li, Z., Ji, B. and Zhou, J. (2019) A local minimax method using virtual geometric objects: Part I—For finding saddles. SIAM Journal of Scientific Computing, 78(1), 202–225.
    [Google Scholar]
  57. Li, Z. and Zhou, J. ( (2019) A local minimax method using virtual geometric objects: Part II—For finding equality constrained saddles. SIAM Journal of Scientific Computing, 78(1), 226–245.
    [Google Scholar]
  58. Lucio, P., Lambaré, G. and Hanyga, A. (1996) 3D multidimensional travel time and amplitude maps. Pure and Applied Geophysics, 148(3–4), 449–479.
    [Google Scholar]
  59. Moser, T.J. (1991) Shortest path calculation of seismic rays. Geophysics, 56(1), 59–67.
    [Google Scholar]
  60. Moser, T.J., Nolet, G. and Snieder, R. (1992) Ray bending revisited. Bulletin of the Seismological Society of America, 82(1), 259–288.
    [Google Scholar]
  61. Musgrave, M. (1954) On the propagation of elastic waves in aeolotropic media. I. General principles. Proceedings of the Royal Society of London, A226, 339–355, https://doi.org/10.1098/rspa.1954.0258.
    [Google Scholar]
  62. Musgrave, M. (1970) Crystal Acoustics: Holden‐Day, 2nd edition. Acoustical Society of America.
    [Google Scholar]
  63. Pereyra, V. (1988) Numerical methods for inverse problems in three‐dimensional geophysical modeling. Applied Numerical Mathematics, 4, 97–139.
    [Google Scholar]
  64. Pereyra, V. (1992) Two‐point ray tracing in general 3D media. Geophysical Prospecting, 40(3), 267–287.
    [Google Scholar]
  65. Pereyra, V. (1996) Modeling, inversion and block nonlinear traveltime inversion in 3D. Pure and Applied Geophysics, 148(3–4), 345–386.
    [Google Scholar]
  66. Pereyra, V., Lee, W. and Keller, H. (1980) Solving two‐point seismic ray‐tracing problems in heterogeneous medium. Bulletin of the Seismological Society of America, 70(1), 79–99.
    [Google Scholar]
  67. Popov, M. (1982) A new method of computation of wave fields using Gaussian beams. Wave Motion, 4(1), 85–97.
    [Google Scholar]
  68. Popov, M. and Pšenčík, I. (1978) Computation of ray amplitudes in inhomogeneous media with curved interfaces. Studia Geophysica et Geodaetica, 22, 248–258.
    [Google Scholar]
  69. Pšenčík, I. and Vavryčuk, V. (2002) Approximate relation between the ray vector and wave normal directions in weakly anisotropic media. Studia Geophysica et Geodaetica, 46, 793–807.
    [Google Scholar]
  70. Ravve, I. and Koren, Z. (2019) Directional derivatives of ray velocity in anisotropic elastic media. Geophysical Journal International, 216(2), 859–895.
    [Google Scholar]
  71. Ravve, I. and Koren, Z. (2020a) Eigenrays in 3D heterogeneous anisotropic media: Part IV – Geometric spreading from traveltime Hessian. arXiv:2003.10242.
  72. Ravve, I. and Koren, Z. (2020b) Eigenrays in 3D heterogeneous anisotropic media. Part V – Dynamics, variational formulation. arXiv:2003.10243.
  73. Ravve, I. and Koren, Z. (2020c) Eigenrays in 3D heterogeneous anisotropic media. Part VI – Dynamics, Lagrangian vs. Hamiltonian approaches. arXiv:2003.10244.
  74. Ravve, I. and Koren, Z. (2020d) Eigenrays in 3D heterogeneous anisotropic media. Part VII – Dynamics, finite‐element implementation. arXiv:2003.11418.
  75. Ravve, I. and Koren, Z. (2020e) Eigenray in 3D heterogeneous general anisotropic media: dynamics: EAGE 82nd Conference and Technical Exhibition, Expanded Abstract.
  76. Ravve, I. and Koren, Z. (2021) Eigenrays in 3D heterogeneous anisotropic media, Part II: Dynamics. Geophysical Prospecting, 69, 28–52.
    [Google Scholar]
  77. Rawlinson, N., Hauser, J. and Sambridge, M. (2008) Seismic ray tracing and wavefront tracking in laterally heterogeneous media. Advances in Geophysics, 49, 203–273.
    [Google Scholar]
  78. Reddy, J. (2004) An Introduction to the Finite Element Method: McGraw‐Hill Mechanical Engineering.
    [Google Scholar]
  79. Ren, W. and Vanden‐Eijnden, E. (2013) A climbing string method for saddle point search. The Journal of Chemical Physics, 138(13), 134105.
    [Google Scholar]
  80. Roganov, Y. and Stovas, A. (2010) On shear‐wave triplications in a multilayered transversely isotropic medium with vertical symmetry axis. Geophysical Prospecting, 58, 549–559.
    [Google Scholar]
  81. Schleicher, J., Tygel, M. and Hubral, P. (2007) Seismic True‐Amplitude Imaging. Geophysical Developments no. 12.Society of Exploration Geophysicists.
    [Google Scholar]
  82. Segerlind, L. (1984) Applied Finite Element Analysis, 2nd edition. John Wiley & Sons.
    [Google Scholar]
  83. Schoenberg, M. and Daley, T. (2003) qSV wavefront triplication in transversely isotropic material. SEG International Exposition and 73rd Annual Meeting, Expanded Abstract, 137–140.
  84. Shashidhar, N. and Anand, G. (1995) Eigenray tracing in an ocean using Fermat's principle. Journal of Sound and Vibration, 186(2), 231–243.
    [Google Scholar]
  85. Slawinski, M. (2015) Waves and Rays in Elastic Continua. World Scientific Publishing.
    [Google Scholar]
  86. Smith, M., Julian, B., Engdahl, E., Gubbins, D. and Gross, R. (1979) Linearized inversion of traveltimes for three‐dimensional earth structure, Abstract. Eos Transactions of American Geophysical Union, 59, 12.
    [Google Scholar]
  87. Snieder, R. and Spencer, C. (1993) A unified approach to ray bending, ray perturbation and paraxial ray theories. Geophysical Journal International, 115, 456–470.
    [Google Scholar]
  88. Sommerfeld, A. (1964) Optics: Lectures on Theoretical Physics, 4. Academic Press.
    [Google Scholar]
  89. Song, L.P. and Every, A.G. (2000) Approximate formulae for acoustic wavegroup slownesses in weakly orthorhombic media. Journal of Physics D: Applied Physics, 33, L81–L85, https://doi.org/10.1088/0022-3727/33/17/101.
    [Google Scholar]
  90. Sripanich, Y.S. and Fomel, S. (2014) Two‐point seismic ray tracing in layered media using bending. SEG International Exposition and 84th Annual Meeting, Expanded Abstract, 453–457.
  91. Stovas, A. (2016) Vertical on‐axis triplications in orthorhombic media. Journal of Geophysics and Engineering, 13(6), 875–879.
    [Google Scholar]
  92. Stovas, A., Roganov, Y. and Roganov, V. (2020) Geometrical characteristics of phase and group velocity surfaces in anisotropic media. Geophysical Prospecting, 68, Early view. https://doi.org/10.1111/1365-2478.13030.
    [Google Scholar]
  93. Strahilevitz, R., Kosloff, D. and Koren, Z. (1998) Three‐dimensional two‐point ray tracing using paraxial rays in Cartesian coordinates. SEG International Exposition and 68th Annual Meeting, Expanded Abstract, 1887–1892.
  94. Thomsen, L. and Dellinger, J. (2003) On shear‐wave triplications in transversely isotropic media. Journal of Applied Geophysics, 54, 289–296.
    [Google Scholar]
  95. Thomson, C. (1983) Ray‐theoretical amplitude inversion for laterally varying velocity structure below NORSAR. Geophysical Journal International, 74(2), 525–558.
    [Google Scholar]
  96. Thomson, C. (1989) Corrections for grazing rays to 2‐D seismic modeling. Geophysical Journal International, 96(3), 415–446.
    [Google Scholar]
  97. Thomson, C. and Chapman, C. (1985) An introduction to Maslov's asymptotic method. Geophysical Journal International, 83(1), 143–168.
    [Google Scholar]
  98. Thomson, C. and Gubbins, D. (1982) Three‐dimensional atmospheric modeling at NORSAR: linearity of the method and amplitude variations from the anomalies. Geophysical Journal International, 71(1), 1–36.
    [Google Scholar]
  99. Thurber, C. and Kissling, E. (2000) Advances in Travel‐Time Calculations for 3‐D Structures: “Advances in Seismic Event Location”, 71–99. Kluwer Academic Publishers.
    [Google Scholar]
  100. Tsvankin, I. and Grechka, V. (2011) Seismology of Azimuthally Anisotropic Media and Seismic Fracture Characterization. SEG.
    [Google Scholar]
  101. Um, J. and Thurber, C. (1987) A fast algorithm for two‐point seismic ray tracing. Bulletin of the Seismological Society of America, 77(3), 972–986.
    [Google Scholar]
  102. Vanelle, C. and Gajewski, D. (2003) Determination of geometrical spreading from traveltimes. Journal of Applied Geophysics, 54(3), 391–400.
    [Google Scholar]
  103. Vanelle, C. and Gajewski, D. (2013) True‐amplitude Kirchhoff depth migration in anisotropic media: the traveltime‐based approach. Geophysics, 78(5), WC33–WC39.
    [Google Scholar]
  104. Vavryčuk, V. (2003) Generation of triplication on transversely isotropic media. Physical Review B, 68, 054107.
    [Google Scholar]
  105. Vavryčuk, V. (2006) Calculation of the slowness vector from the ray vector in anisotropic media. Proceedings of the Royal Society, Series A, 462, 883–896.
    [Google Scholar]
  106. Vavryčuk, V. (2007) Ray velocity and ray attenuation in homogeneous anisotropic viscoelastic media. Geophysics, 72(6), D119–D127.
    [Google Scholar]
  107. Vavryčuk, V. (2008a) Velocity, attenuation, and quality factor in anisotropic viscoelastic media: a perturbation approach. Geophysics, 73(5), D63–D73.
    [Google Scholar]
  108. Vavryčuk, V. (2008b) Real ray tracing in anisotropic viscoelastic media. Geophysical Journal International, 175, 617–626.
    [Google Scholar]
  109. Vavryčuk, V. (2012) On numerically solving the complex eikonal equation using real ray‐tracing methods: a comparison with the exact analytical solution. Geophysics(4), 77, T109–T116.
    [Google Scholar]
  110. Vinje, V., Iversen, E. and Gjøystdal, H. (1993) Traveltime and amplitude estimation using wavefront construction. Geophysics, 58(8), 1157–1166.
    [Google Scholar]
  111. Virieux, J., Farra, V. and Madariaga, R. (1988) Ray tracing for earthquake location in laterally heterogeneous media. Journal of Geophysical Research, 93(B6), 6585–6599.
    [Google Scholar]
  112. Waltham, D. (1988) Two‐point ray tracing using Fermat's principle. Geophysical Journal International, 93(3), 575–582.
    [Google Scholar]
  113. Wesson, R. (1971) Travel‐time inversion for laterally inhomogeneous crustal velocity models. Bulletin of Seismological Society of America, 61(3), 729–746.
    [Google Scholar]
  114. Westwood, E. and Vidmar, P. (1987) Eigenray finding and time series simulation in a layered‐bottom ocean. The Journal of the Acoustical Society of America, 81(4), 912–924.
    [Google Scholar]
  115. Wong, J. (2010) Fermat's principle and ray tracing in anisotropic layered media. CREWES Research Report, 22, 1–8.
    [Google Scholar]
  116. Wu, C., Wang, H., Hu, J., Luo, F. and Xu, P. (2019) Nonlinear optimal stacking based on shortest path ray tracing for enhancing pre‐stack seismic data. EAGE 80th Conference and Technical Exhibition, Expanded Abstract. https://doi.org/10.3997/2214-4609.201900847.
  117. Xu, S. and Stovas, A. (2018) Triplications on traveltime surface for pure and converted wave modes in elastic orthorhombic media. Geophysical Journal International, 215(1), 677–694.
    [Google Scholar]
  118. Xu, S., Stovas, A. and Mikada, H. (2020) Triplications for the converted wave in transversely isotropic media with a tilted symmetry axis. Geophysical Prospecting, 68, 1126–1138.
    [Google Scholar]
  119. Xu, S., Stovas, A., Mikada, H. and Takekawa, J. (2021) On‐axis triplications in elastic orthorhombic media. Geophysical Journal International, 224, 449–467.
    [Google Scholar]
  120. Xu, T., Wu, C. and Wu, Z. (2014) Seismic traveltime inversion of 3D velocity model with triangulated interfaces. Earthquake Science, 27(2), 127–136.
    [Google Scholar]
  121. Yong, J. and Cheng, F. (2004) Geometric Hermite curves with minimum strain energy. Computer Aided Geometric Design, 21, 281–301
    [Google Scholar]
  122. Zhang, J. and Du, Q. (2012a) Shrinking dimer dynamics and its application for saddle point search. SIAM Journal on Numerical Analysis, 50(4), 1899–1921.
    [Google Scholar]
  123. Zhang, J. and Du, Q. (2012b) Constrained shrinking dimer dynamics for saddle point search with constraints. Journal of Computational Physics, 231(14), 4745–4758.
    [Google Scholar]
  124. Zhang, L. and Zhou, B. (2018) Calculation of slowness vectors from ray directions for qP‐, qSV‐, and qSH‐waves in tilted transversely isotropic media. Geophysics, 83(4), C153–C160.
    [Google Scholar]
  125. Zhao, A., Zhang, Z. and Teng, J. (2004) Minimum travel time tree algorithm for seismic ray tracing: improvements in efficiency. Journal of Geophysics and Engineering, 1, 245–251.
    [Google Scholar]
  126. Zhou, B. and Greenhalgh, S. (2005) ‘Shortest path’ ray tracing for most general 2D/3D anisotropic media. Journal of Geophysics and Engineering, 2, 54–63.
    [Google Scholar]
  127. Zhou, B. and Greenhalgh, S. (2006) Raypath and traveltime computations for 2D transversely isotropic media with dipping symmetry axes. Exploration Geophysics, 37, 150–159.
    [Google Scholar]
  128. Zienkiewicz, O., Taylor, R. and Zhu, J. (2013) The Finite Element Method, Its Basis and Fundamentals. Elsevier Ltd.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13052
Loading
/content/journals/10.1111/1365-2478.13052
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Anisotropy , Computing aspects and Rays
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error