1887
Volume 69, Issue 6
  • E-ISSN: 1365-2478
PDF

Abstract

ABSTRACT

The precision of P‐ and S‐wave phase picking strongly determines the precision of earthquake locations, but such picking can be challenging in the case of emergent signals, large data sets or temporally varying seismic networks. To overcome these challenges, we have developed the concept of an aggregated template to perform automatic picking of the P‐ and S‐wave phases. An aggregated template is defined as a representative event for a small area, built by aggregating the best signal‐to‐noise‐ratio seismic traces from events with similar waveforms (i.e. multiplet events). A template matching procedure, based on the cross‐correlation between an aggregated template and an unpicked event, automatically determines the unpicked event P‐ and S‐wave phases. This method enables (1) consistent and accurate P‐ and S‐wave phase picking and (2) reduces processing time relative to traditional template matching by using a clustering method that finds the most representative templates for a region, and thus limiting the required number of templates. We established two parameters to weight the picking precision: (1) the cross‐correlation between the aggregated template and the unpicked event and (2) the number of P‐ and S‐wave picks determined per event. We tested this method on 2100 events recorded in the south‐west of Iceland. Nineteen aggregated templates have been defined and used to automatically pick ∼65% of the complete event catalogue with an accuracy within the range of the manual picking uncertainty. These automatically picked events can then be used for event location, even when characterized by low magnitude, low signal to noise ratios and with emergent P‐wave signals.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13103
2021-06-14
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/gpr/69/6/gpr13103.html?itemId=/content/journals/10.1111/1365-2478.13103&mimeType=html&fmt=ahah

References

  1. Björnsson, S. and Einarsson, P. (1974) Seismicity of Iceland. In L.Kristjansson (Ed.) Geodynamics of Iceland and the North Atlantic Area. Dordrecht: Springer Netherlands, pp. 225–239.
    [Google Scholar]
  2. Blanck, H., Jousset, P., Hersir, G.P., Ágústsson, K. and Flóvenz, Ó.G. (2019) Analysis of 2014–2015 on‐ and off‐shore passive seismic data on the Reykjanes Peninsula, SW Iceland. Journal of Volcanology and Geothermal Research, 391, 106548. https://doi.org/10.1016/j.jvolgeores.2019.02.001
    [Google Scholar]
  3. Bourouis, S. and Bernard, P. (2007) Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients. Geophysical Journal International, 169(2), 723–732. https://doi.org/10.1111/j.1365‐246X.2006.03325.x
    [Google Scholar]
  4. Cuenot, N., Dorbath, C. and Dorbath, L. (2008) Analysis of the microseismicity induced by fluid injections at the EGS Site of Soultz‐sous‐Forêts (Alsace, France): Implications for the characterization of the geothermal reservoir properties. Pure and Applied Geophysics, 165(5), 797–828. https://doi.org/10.1007/s00024‐008‐0335‐7
    [Google Scholar]
  5. De Meersman, K., Kendall, J.‐M. and van der Baan, M. (2009) The 1998 Valhall microseismic data set: an integrated study of relocated sources, seismic multiplets, and S‐wave splitting. Geophysics, 74(5), B183–B195. https://doi.org/10.1190/1.3205028
    [Google Scholar]
  6. Deichmann, N., Kraft, T. and Evans, K.F. (2014) Identification of faults activated during the stimulation of the Basel geothermal project from cluster analysis and focal mechanisms of the larger magnitude events. Geothermics, 52, 84–97. https://doi.org/10.1016/j.geothermics.2014.04.001
    [Google Scholar]
  7. Ellsworth, W. (2013) Injection‐induced earthquakes. Science, 341(6142), 1225942. https://doi.org/10.1126/science.1225942
    [Google Scholar]
  8. Ellsworth, W., Llenos, A.L., McGarr, A., Michael, A.J., Rubinstein, J.L., Mueller, C.S., et al. (2015) Increasing seismicity in the U.S. midcontinent: implications for earthquake hazard. The Leading Edge, 34(6), 618–626. https://doi.org/10.1190/tle34060618.1
    [Google Scholar]
  9. Foulger, G.R., Wilson, M.P., Gluyas, J.G., Davies, R.J. and Julian, B. (2018) Global review of human‐induced earthquakes. Earth‐Science Reviews, 178, 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008
    [Google Scholar]
  10. Gaucher, E., Schoenball, M., Heidbach, O., Zang, A., Fokker, P.A., van Wees, J.D. and Kohl, T. (2015) Induced seismicity in geothermal reservoirs: a review of forecasting approaches. Renewable and Sustainable Energy Reviews, 52, 1473–1490. https://doi.org/10.1016/j.rser.2015.08.026
    [Google Scholar]
  11. Geiger, L. (1910) Herbsetimmung bei Erdbeben aus den Ankunfzeiten. K. Gessell. Will. Goett, 4, 331–349.
    [Google Scholar]
  12. Geiger, L. (1912) Probability method for the determination of earthquake epilefts from the arrival time only. Bulletin St. Louis University, 8, 60–71.
    [Google Scholar]
  13. Gibbons, S.J. and Ringdal, F. (2006) The detection of low magnitude seismic events using array‐based waveform correlation. Geophysical Journal International, 165(1), 149–166. https://doi.org/10.1111/j.1365‐246X.2006.02865.x
    [Google Scholar]
  14. Goertz‐Allmann, B.P., Kühn, D., Oye, V., Bohloli, B. and Aker, E. (2014) Combining microseismic and geomechanical observations to interpret storage integrity at the In Salah CCS site. Geophysical Journal International, 198(1), 447–461. https://doi.org/10.1093/gji/ggu010
    [Google Scholar]
  15. Goertz‐Allmann, B.P., Gibbons, S.J., Oye, V., Bauer, R. and Will, R. (2017) Characterization of induced seismicity patterns derived from internal structure in event clusters. Journal of Geophysical Research: Solid Earth, 122(5), 3875–3894. https://doi.org/10.1002/2016JB013731
    [Google Scholar]
  16. Gudhnason, E.Á. (2014) Analysis of seismic activity on the western part of the Reykjanes Peninsula, SW Iceland, December 2008–May 2009 (Master's thesis, Faculty of Earth Sciences, University of Iceland, p. 83).
    [Google Scholar]
  17. Jakobsdóttir, S.S. (2008) Seismicity in Iceland: 1994–2007. Jökull, 58, 75–100.
    [Google Scholar]
  18. Jousset, P., Blanck, H., Franke, S., Metz, M., Ágústsson, K., Verdel, A., et al. (2016) Seismic tomography in Reykjanes, SW Iceland. Extended Abstract European Geothermal Congress, Strasbourg.
    [Google Scholar]
  19. Jousset, P., Hersir, G.P., Blanck, H., Kirk, H., Erbas, K., Hensch, M., et al. (2020) IMAGE (Integrated Methods for Advanced Geothermal Exploration). Deutsches GeoForschungsZentrum GFZ. Other/Seismic Network. https://doi.org/10.14470/9Y7569325908
  20. Khodayar, M., Björnsson, S., Gudhnason, E.Á., Nielsson, S., Axelsson, G. and Hickson, C. (2018) Tectonic control of the Reykjanes geothermal field in the oblique rift of SW Iceland: from regional to reservoir scales. Open Journal of Geology, 8(3), 333–382. https://doi.org/10.4236/ojg.2018.83021
    [Google Scholar]
  21. Kraft, T. and Deichmann, N. (2014) High‐precision relocation and focal mechanism of the injection‐induced seismicity at the Basel EGS. Geothermics, 52, 59–73. https://doi.org/10.1016/j.geothermics.2014.05.014
    [Google Scholar]
  22. Majer, E.L., Baria, R., Stark, M., Oates, S.J., Bommer, J., Smith, B. and Asanuma, H. (2007) Induced seismicity associated with enhanced geothermal systems. Geothermics, 36(3), 185–222. https://doi.org/10.1016/j.geothermics.2007.03.003
    [Google Scholar]
  23. Pavlis, G.L. (1992) Appraising relative earthquake location errors. Bulletin of the Seismological Society of America, 82(2), 836–859.
    [Google Scholar]
  24. Ross, Z.E. and Ben‐Zion, Y. (2014) Automatic picking of direct P, S seismic phases and fault zone head waves. Geophysical Journal International, 199(1), 368–381. https://doi.org/10.1093/gji/ggu267
    [Google Scholar]
  25. Rowe, C.A., Aster, R.C., Phillips, W.S., Jones, R.H., Borchers, B. and Fehler, M.C. (2002) Using automated, high‐precision repicking to improve delineation of microseismic structures at the Soultz geothermal reservoir. In Trifu,C.I. (Ed.) The Mechanism of Induced Seismicity:. Pageoph Topical Volumes. Springer, pp. 563–596. https://doi.org/10.1007/978‐3‐0348‐8179‐1_24
    [Google Scholar]
  26. Shearer, P.M. (1997) Improving local earthquake locations using the L1 norm and waveform cross correlation: application to the Whittier Narrows, California, aftershock sequence. Journal of Geophysical Research: Solid Earth, 102(B4), 8269–8283. https://doi.org/10.1029/96JB03228
    [Google Scholar]
  27. Sleeman, R. and van Eck, T. (1999) Robust automatic P‐phase picking: an on‐line implementation in the analysis of broadband seismogram recordings. Physics of the Earth and Planetary Interiors, 113(1), 265–275. https://doi.org/10.1016/S0031‐9201(99)00007‐2
    [Google Scholar]
  28. Storn, R. and Price, K. (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328
    [Google Scholar]
  29. Stuermer, K., Kummerow, J. and Shapiro, S.A. (2011) Waveform similarity analysis at Cotton Valley, Texas. In 81st SEG Annual Meeting, San Antonio, TX, USA. Expanded Abstract, 1669–1673. https://doi.org/10.1190/1.3627524
  30. Stuermer, K., Kummerow, J. and Shapiro, S.A. (2012) Multiplet based extraction of geological structures. In 82nd SEG Annual Meeting, Las Vegas, Nevada, USA. Expanded Abstracts, 1–5. https://doi.org/10.1190/segam2012‐1048.1
  31. Thordarson, T. and Larsen, G. (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. Journal of Geodynamics, 43(1), 118–152. https://doi.org/10.1016/J.JOG.2006.09.005
    [Google Scholar]
  32. van der Baan, M. and Calixto, F.J. (2017) Human‐induced seismicity and large‐scale hydrocarbon production in the USA and Canada. Geochemistry, Geophysics, Geosystems, 18(7), 2467–2485. https://doi.org/10.1002/2017GC006915
    [Google Scholar]
  33. Weemstra, C., Obermann, A., Verdel, A., Paap, B., Blanck, H., Guðnason, E.Á., et al. (2016) Time‐lapse seismic imaging of the Reykjanes geothermal reservoir. In Proceedings of the European Geothermal Congress. European Geothermal Energy Council (EGEC), Strasbourg.
  34. Wuestefeld, A., Greve, S.M., Näsholm, S.P. and Oye, V. (2018) Benchmarking earthquake location algorithms: a synthetic comparison. Geophysics, 83(4), KS35–KS47. https://doi.org/10.1190/geo2017‐0317.1
    [Google Scholar]
  35. Zang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A., et al. (2014) Analysis of induced seismicity in geothermal reservoirs – an overview. Geothermics, 52(Supplement C), 6–21. https://doi.org/10.1016/j.geothermics.2014.06.005
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13103
Loading
/content/journals/10.1111/1365-2478.13103
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Data processing and Monitoring
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error