1887
Volume 69, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Facies boundaries are critical for flow performance in a reservoir and are significant for lithofacies identification in well interpretation and reservoir prediction. Facies identification based on supervised machine learning methods usually requires a large amount of labelled data, which are sometimes difficult to obtain. Here, we introduce the deep autoencoder to learn the hidden features and conduct facies classification from elastic attributes. Both labelled and unlabelled data are involved in the training process. Then, we develop a semi‐supervised deep autoencoder by taking the mean of intra‐class and the whole population of facies into account to construct a classification regularization term, thereby improving the classification accuracy and reducing the uncertainty. The new method inherits the profits of deep autoencoder and absorbs the information provided by labelled data. The proposed method performs well and produces promising results when it is used to address problems of reservoir prediction and facies identification. The new method is evaluated on both well and seismic data and compared with the conventional deep autoencoder method, which demonstrates its feasibility and superiority with respect to classification accuracy.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13106
2021-06-14
2024-03-29
Loading full text...

Full text loading...

References

  1. Alaudah, Y., Michalowicz, P., Alfarraj, M. and Alregib, G. (2019) A machine‐learning benchmark for facies classification. Interpretation, 7(3), SE175–SE187.
    [Google Scholar]
  2. Amendola, A., Gabbriellini, G., Dellaversana, P. and Marini, A.J. (2017) Seismic facies analysis through musical attributes. Geophysical Prospecting, 65, 49–58.
    [Google Scholar]
  3. Ayumi, V., Rere, L.M.R., Fanany, M.I. and Arymurthy, A.M. (2016) Optimization of convolutional neural network using microcanonical annealing algorithm. In: 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS). Piscataway, NJ: IEEE; pp. 506–511.
  4. Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H. (2007) Greedy layer‐wise training of deep networks. In: Schölkopf, B., Platt, J. and Hoffman, T. (Eds.) Advances in Neural Information Processing Systems, 19 (NIPS 2006). Cambridge, MA: MIT Press, pp. 153–160.
    [Google Scholar]
  5. Chen, W., Yang, L., Zha, B., Zhang, M. and Chen, Y. (2020) Deep learning reservoir porosity prediction based on multilayer long short‐term memory network. Geophysics, 85(4), WA213–WA225.
    [Google Scholar]
  6. Chen, Y., Zhang, M., Bai, M. and Chen, W. (2019) Improving the signal‐to‐noise ratio of seismological datasets by unsupervised machine learning. Seismological Research Letters, 90(4), 1552–1564.
    [Google Scholar]
  7. Chopra, S. and Marfurt, K.J. (2018) Seismic facies classification using some unsupervised machine‐learning methods. 88th Annual International Meeting, SEG, Expanded Abstracts, pp. 2056–2060.
  8. Das, V., Pollack, A., Wollner, U. and Mukerji, T. (2018) Convolutional neural network for seismic impedance inversion. 88th Annual International Meeting, SEG, Expanded Abstracts, pp. 2071–2075.
  9. Deng, J., Zhang, Z., Marchi, E. and Schuller, B. (2013) Sparse autoencoder‐based feature transfer learning for speech emotion recognition. In: Affective Computing and Intelligent Interaction. Berlin, Springer; pp. 511–516.
    [Google Scholar]
  10. GaoYang, ZhaoPingqi, LiGuofa and LiHao (2021) Seismic noise attenuation by signal reconstruction: an unsupervised machine learning approach. Geophysical Prospecting, 69(5), 984–1002. http://doi.org/10.1111/1365‐2478.13070.
    [Google Scholar]
  11. Grana, D., Azevedo, L. and Liu, M. (2019) A comparison of deep machine learning and Monte Carlo methods for facies classification from seismic data. Geophysics, 85(4), WA41–WA52.
    [Google Scholar]
  12. Hall, B. (2016) Facies classification using machine learning. The Leading Edge, 35(10), 906–909.
    [Google Scholar]
  13. Han, K., Wang, Y., Zhang, C., Li, C. and Xu, C. (2018) Autoencoder inspired unsupervised feature selection. In: International Conference on Acoustics, Speech, and Signal Processing. Piscataway, NJ: IEEE; pp. 2941–2945.
    [Google Scholar]
  14. Haripriya, H., Devisree, R., Pooja, D. and Nedungadi, P. (2015) A comparative performance analysis of self organizing maps on weight initializations using different strategies. In: 2015 Fifth International Conference on Advances in Computing and Communications (ICACC). Piscataway, NJ: IEEE; pp. 434–438.
  15. He, K., Zhang, X., Ren, S. and Sun, J. (2015) Delving deep into rectifiers: Surpassing human‐level performance on imagenet classification. 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ: IEEE; pp. 1026–1034.
  16. Hinton, G.E. and Salakhutdinov, R. (2006) Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.
    [Google Scholar]
  17. Huang, L., Dong, X. and Clee, T.E. (2017) A scalable deep learning platform for identifying geologic features from seismic attributes. Geophysics, 36(3), 249–256.
    [Google Scholar]
  18. Itano, F., de Abreu de Sousa, M.A. and Del‐Moral‐Hernandez, E. (2018) Extending MLP ANN hyper‐parameters optimization by using genetic algorithm. In: 2018 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ: IEEE; pp. 1–8.
  19. Jervis, M., Liu, M. and Nivlet, P. (2018) Deep learning applied to seismic facies classification. New Advances in Seismic Interpretation Workshop, https://doi.org/10.3997/2214‐4609.201800237.
  20. Khalifa, M.H., Ammar, M., Ouarda, W. and Alimi, A.M. (2017) Particle swarm optimization for deep learning of convolution neural network. In: 2017 Sudan Conference on Computer Science and Information Technology (SCCSIT). Piscataway, NJ: IEEE; pp. 1–5.
  21. Li, D., Peng, S., Lu, Y., Guo, Y. and Cui, X. (2019) Seismic structure interpretation based on machine learning: a case study in coal mining. Interpretation, 7(3), SE69–SE79.
    [Google Scholar]
  22. Li, M. and Liu, K. (2019) Causality‐based attribute weighting via information flow and genetic algorithm for naive Bayes classifier. IEEE Access, 7, 150630–150641.
    [Google Scholar]
  23. Li, S., Liu, B., Ren, Y., Chen, Y., Yang, S., Wang, Y. and Jiang, P. (2020) Deep‐learning inversion of seismic data. IEEE Transactions on Geoscience and Remote Sensing, 58, 2135–2149.
    [Google Scholar]
  24. Liang, J. and Liu, R. (2015) Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network. In: 2015 8th International Congress on Image and Signal Processing (CISP), Piscataway, NJ: IEEE; pp. 697–701.
  25. Lindsay, R. and Koughnet, R.V. (2012) Sequential Backus averaging: upscaling well logs to seismic wavelengths. The Leading Edge, 20(2), 188–191.
    [Google Scholar]
  26. Liu, J., Dai, X., Gan, L., Liu, L. and Lu, W. (2018) Supervised seismic facies analysis based on image segmentation. Geophysics, 83(2), O25–O30.
    [Google Scholar]
  27. Liu, X., Chen, X., Chen, L. and Li, J. (2020a) Nonlinear prestack inversion using the reflectivity method and quantum particle swarm optimization. Journal of Seismic Exploration, 29(4), 305–326.
    [Google Scholar]
  28. Liu, X., Chen, X., Li, J., Zhou, X. and Chen, Y. (2020b) Facies identification based on multikernel relevance vector machine. IEEE Transactions on Geoscience and Remote Sensing, 58(10), 7282–7296.
    [Google Scholar]
  29. Liu, X., Li, J., Chen, X., Zhou, L. and Guo, K. (2017) Bayesian discriminant analysis of lithofacies integrate the Fisher transformation and the kernel function estimation. Interpretation, 5(2), SE1–SE10.
    [Google Scholar]
  30. Liu, X., Zhou, L., Chen, X. and Li, J. (2020c) Lithofacies identification using support vector machine based on local deep multi‐kernel learning. Petroleum Science, 17(4), 954–966.
    [Google Scholar]
  31. Martens, J. (2010) Deep learning via hessian‐free optimization. Presented at Proceedings of the 27th International Conference on Machine Learning (ICML‐10), 21–24 June, 2010, Haifa, Israel.
  32. Masood, S., Doja, M.N. and Chandra, P. (2015) Analysis of weight initialization techniques for gradient descent algorithm. In: 2015 Annual IEEE India Conference (INDICON). Piscataway, NJ: IEEE; pp. 1–5.
  33. Mukerji, T., Jørstad, A., Avseth, P., Mavko, G. and Granli, J. (2001) Mapping lithofacies and pore‐fluid probabilities in a North Sea reservoir: seismic inversions and statistical rock physics. Geophysics, 66(4), 988–1001.
    [Google Scholar]
  34. Nienhold, D., Schwab, K., Dornberger, R. and Hanne, T. (2015) Effects of weight initialization in a feedforward neural network for classification using a modified genetic algorithm. In: 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), Piscataway, NJ: IEEE; pp. 6–12.
  35. Paul Ijjina, E. and Krishna Mohan, C. (2016) Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recognition, 59, 199–212.(Compositional Models and Structured Learning for Visual Recognition).
    [Google Scholar]
  36. Qi, J., Lin, T., Zhao, T., Li, F. and Marfurt, K.J. (2016) Semisupervised multiattribute seismic facies analysis. Interpretation, 4(1), SB91–SB106.
    [Google Scholar]
  37. Qi, J., Zhang, B., Lyu, B. and Marfurt, K. (2020) Seismic attribute selection for machine‐learning‐based facies analysis. Geophysics, 85(2), O17–O35.
    [Google Scholar]
  38. Qian, F., Yin, M., Liu, X.‐Y., Wang, Y.‐J., Lu, C. and Hu, G.‐M. (2018) Unsupervised seismic facies analysis via deep convolutional autoencoders. Geophysics, 83(3), A39–A43.
    [Google Scholar]
  39. Roy, A., Romeropelaez, A.S., Kwiatkowski, T.J. and Marfurt, K.J. (2014) Generative topographic mapping for seismic facies estimation of a carbonate wash, Veracruz basin, southern Mexico. Interpretation, 2(1), SA31–SA47.
    [Google Scholar]
  40. Rudd‐Orthner, R.N.M. and Mihaylova, L. (2019) Non‐random weight initialisation in deep learning networks for repeatable determinism. In: 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). Piscataway, NJ: IEEE; pp. 223–230.
  41. Saad, O.M. and Chen, Y. (2020) Deep denoising autoencoder for seismic random noise attenuation. Geophysics, 85(4), V367–V376.
    [Google Scholar]
  42. Sams, M.S. and Saussus, D. (2010) Uncertainties in the quantitative interpretation of lithology probability volumes. Geophysics, 29(5), 576–583.
    [Google Scholar]
  43. Sams, M.S. and Williamson, P.R. (1994) Backus averaging, scattering and drift. Geophysical Prospecting, 42(6), 541–564.
    [Google Scholar]
  44. Shin, H., Orton, M.R., Collins, D.J., Doran, S.J. and Leach, M.O. (2013) Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1930–1943.
    [Google Scholar]
  45. Sodhi, S.S. and Chandra, P. (2014) Interval based weight initialization method for sigmoidal feedforward artificial neural networks. AASRI Procedia, 6, 19–25.
    [Google Scholar]
  46. Sun, J., Slang, S., Elboth, T., Larsen Greiner, T., McDonald, S. and Gelius, L.‐J. (2019) Attenuation of marine seismic interference noise employing a customized U‐net. Geophysical Prospecting, 68, 845–871.
    [Google Scholar]
  47. Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X. and Chen, X. (2016) A sparse auto‐encoder‐based deep neural network approach for induction motor faults classification. Measurement, 89, 171–178.
    [Google Scholar]
  48. Tao, C., Pan, H., Li, Y. and Zou, Z. (2015) Unsupervised spectral spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geoscience and Remote Sensing Letters, 12(12), 2438–2442.
    [Google Scholar]
  49. Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.A. (2008) Extracting and composing robust features with denoising autoencoders. Presented at the Machine Learning, Proceedings of the Twenty‐Fifth International Conference (ICML 2008), Helsinki, Finland, 5–9 June, 2008.
  50. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. and Manzagol, P.A. (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11(12), 3371–3408.
    [Google Scholar]
  51. Vinyals, O. and Povey, D. (2011) Krylov subspace descent for deep learning. Preprint. arXiv:1111.4259 [stat.ML].
  52. Waldeland, A.U. and Solberg, A.H.S.S. (2017) Salt classification using deep learning. 79th Annual International Meeting, EAGE, Expanded Abstracts. https://doi.org/10.3997/2214‐4609.201700918
  53. Wallet, B.C. and Hardisty, R. (2019) Unsupervised seismic facies using Gaussian mixture models. Interpretation, 7(3), SE93–SE111.
    [Google Scholar]
  54. Wang, B., Sun, Y., Xue, B. and Zhang, M. (2018) Evolving deep convolutional neural networks by variable‐length particle swarm optimization for image classification. In: 2018 IEEE Congress on Evolutionary Computation (CEC), Piscataway, NJ: IEEE; pp. 1–8.
  55. Wang, Y., Wang, B., Tu, N. and Geng, J. (2020) Seismic trace interpolation for irregularly spatial sampled data using convolutional autoencoder. Geophysics, 85(2), V119–V130.
    [Google Scholar]
  56. Wen, B., Feng, X., Yang, Q., and Li, Z. (2019) Seismic facies recognition based on prestack data using two‐dimensional convolutional auto‐encoder and cluster analysis. In: 2nd International Conference on Information Communication and Signal Processing, Piscataway, NJ: IEEE; pp. 430–434.
  57. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S. and Ma, Y. (2009), Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 210–227.
    [Google Scholar]
  58. Wrona, T., Pan, I., Gawthorpe, R.L. and Fossen, H. (2018) Seismic facies analysis using machine‐learning. Geophysics, 83(5), O17–O35.
    [Google Scholar]
  59. Yamasaki, T., Honma, T. and Aizawa, K. (2017) Efficient optimization of convolutional neural networks using particle swarm optimization. In: 2017 IEEE Third International Conference on Multimedia Big Data (BigMM). Piscataway, NJ: IEEE; pp. 70–73.
  60. Yu, S. and Ma, J. (2021) Data‐driven geophysics: from dictionary learning to deep learning. Reviews of Geophysics, 1–73.
    [Google Scholar]
  61. Zhang, G., Wang, Z. and Chen, Y. (2018) Deep learning for seismic lithology prediction. Geophysical Journal International, 215(2), 1368–1387.
    [Google Scholar]
  62. Zhang, M., Liu, Y., Bai, M. and Chen, Y. (2019) Seismic noise attenuation using unsupervised sparse feature learning. IEEE Transactions on Geoscience and Remote Sensing, 57(12), 9709–9723.
    [Google Scholar]
  63. Zhang, Y., Liu, Y., Zhang, H. and Xue, H. (2020) Seismic facies analysis based on deep learning. IEEE Geoscience and Remote Sensing Letters, 17(7), 1119–1123.
    [Google Scholar]
  64. Zhao, T. (2018) Seismic facies classification using different deep convolutional neural networks. 88th Annual International Meeting, SEG, Expanded Abstracts, pp. 2046–2050.
  65. Zhao, T., Jayaram, V., Roy, A. and Marfurt, K.J. (2015) A comparison of classification techniques for seismic facies recognition. Interpretation, 3(4), SAE29–SAE58.
    [Google Scholar]
  66. Zhao, T., Li, F. and Marfurt, K.J. (2018) Seismic attribute selection for unsupervised seismic facies analysis using user guided data‐adaptive weights. Geophysics, 83(2), O31–O44.
    [Google Scholar]
  67. Zheng, Z. and Yang, J. (2006) Supervised locality pursuit embedding for pattern classification. Image and Vision Computing, 24(8), 819–826.
    [Google Scholar]
  68. Zhou, L., Chen, Z., Li, J., Chen, X., Liu, X. and Liao, J. (2020a) Nonlinear amplitude versus angle inversion for transversely isotropic media with vertical symmetry axis using new weak anisotropy approximation equations. Petroleum Science, 17(3), 628–644.
    [Google Scholar]
  69. Zhou, L., Liao, J., Li, J., Chen, X., Yang, T. and Hursthouse, A. (2020b) Bayesian time‐lapse difference inversion based on the exact Zoeppritz equations with blockiness constraint. Journal of Environmental and Engineering Geophysics, 25(1), 89–100.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13106
Loading
/content/journals/10.1111/1365-2478.13106
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Parameter estimation; Reservoir geophysics; Seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error