1887
Volume 70, Issue 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The epithermal Zn–Pb (Cu–Ag) deposit of Santa Maria represents a distal magmatic‐hydrothermal system, whose mineralizations are controlled by fault systems located in the sedimentary units of the upper Camaquã Basin, above the tectonic units of the Sul‐Riograndense Shield. The hydrothermal alteration zones contain illite, chlorite and pyrite, besides galena, sphalerite, chalcopyrite and bornite. To improve the knowledge of this mineral system, this work investigated the petrophysical footprints of samples representing the predominant lithology, altered rocks and hydrothermal mineralization. The core samples of the predominant lithology, altered rocks and hydrothermal deposit mineralizations were used to determine the following petrophysical properties, density, magnetic susceptibility, primary wave velocity, resistivity, conductivity and chargeability. Moreover, the quantitative evaluation of minerals by scanning electron microscopy coupled with an automated image analysis system allowed us to map lithological and alteration processes. The results indicate density as the most effective physical property to map lithology, hydrothermal alteration and the Zn–Pb (Cu–Au) mineralization. Furthermore, all studied physical properties have moderate effectiveness in the alteration zones of known geological and geophysical anomalies in the Santa Maria deposit. Chargeability could be used, especially when sulphides are disseminated, but additional geological factors complicate its interpretation. The mineralogical and petrophysical diversity of the Santa Maria deposit provided vital data for geological–geophysical interpretations while allowing the creation of a key exploration plan to investigate the Zn–Pb (Cu–Au) mineralization. Finally, petrophysics should be used in prospection to help understand complex geological processes, their overlapping subpopulations and to accelerate mineral research while reducing the use of technical and financial resources and expenditure on ineffective geophysical methodologies.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13180
2022-04-14
2022-05-29
Loading full text...

Full text loading...

References

  1. Aguilef, S., Vargas, J.A. and Yáñez, G. (2017) Relationship between bulk mineralogy and induced polarisation responses in iron oxide‐copper‐gold and porphyry copper mineralisation, northern Chile. Exploration Geophysics, 48, 353–362. https://doi.org/10.1071/EG15077
    [Google Scholar]
  2. Airo, M.‐L. (2015) Geophysical signatures of mineral deposit types in Finland. Geological Survey of Finland, 58, 9–70.
    [Google Scholar]
  3. Airo, M.‐L. and Säävuori, H. (2013) Petrophysical characteristics of Finnish bedrock: concise handbook on the physical parameters of bedrock. Geological Survey of Finland, Report of Investigation 205. 33pp.
  4. Araújo, M.C.D., Silva, A.M., Barbosa, P.F., Boniatti, J.H., Früchting, A., Bouças, S.et al. (2021) Assinatura Geofísica e Geoquímica do Depósito Pb‐Zn–(Cu–Ag) Santa Maria – RS, Brasil. Anuário do Instituto de Geociências, 44, 1–20. https://doi.org/10.11137/1982‐3908_2021_44_41206
    [Google Scholar]
  5. Aydin, A., Ferré, E.C. and Aslan, Z. (2007) The magnetic susceptibility of granitic rocks as a proxy for geochemical composition: example from the Saruhan granitoids. NE Turkey. Tectonophysics, 441, 85–95. https://doi.org/10.1016/j.tecto.2007.04.009
    [Google Scholar]
  6. Basei, M.A.S., SigaJr, O., Masquelin, E. C., Harara, O.M., Reis‐Neto, J. M. and Preciozzi, F. (2000) The Dom Feliciano Belt (Brazil‐Uruguay) and its foreland (Rio de la Plata Craton): framework, tectonic evolution and correlations with similar terranes of Southwestern Africa, in: tectonic evolution of South America. 31st International Geological Congress. Rio de Janeiro, pp. 311–334.
  7. Bento, T.M., Tassinari, C.C.G. and Fonseca, P. E. (2015) Diachronic collision, slab break‐off and long‐term high thermal flux in the Brasiliano – Pan‐African orogeny: Implications for the geodynamic evolution of the Mantiqueira Province. Precambrian Research, 260, 1–22. https://doi.org/10.1016/j.precamres.2014.12.018
    [Google Scholar]
  8. Bérubé, C.L., Olivo, G.R., Chouteau, M., Perrouty, S., Shamsipour, P., Enkin, R.J.et al. (2018) Predicting rock type and detecting hydrothermal alteration using machine learning and petrophysical properties of the Canadian Malartic ore and host rocks, Pontiac Subprovince, Québec, Canada. Ore Geology Reviews, 96, 130–145. https://doi.org/10.1016/j.oregeorev.2018.04.011
    [Google Scholar]
  9. Biondi, J.C. (2015) Processos metalogenéticos e os depósitos minerais brasileiros, 2nd ed.Oficina de Textos, São Paulo.
    [Google Scholar]
  10. Bongiolo, E.M., Renac, C., Mexias, A.S., Gomes, M.E.B., Ronchi, L.H. and Patrier‐Mas, P. (2011) Evidence of Ediacaran glaciation in southernmost Brazil through magmatic to meteoric fluid circulation in the porphyry‐epithermal Au–Cu deposits of Lavras do Sul. Precambrian Research, 189, 404–419. https://doi.org/10.1016/j.precamres.2011.05.007
    [Google Scholar]
  11. Brito Neves, B.B. and Cordani, U.G. (1991) Tectonic evolution of South America during the Late Proterozoic. Precambrian Research, 53, 23–40.
    [Google Scholar]
  12. Byrne, K., Lesage, G., Morris, W., Enkin, R. and Lee, R. (2019) Variability of outcrop magnetic susceptibility and its relationship to the porphyry Cu centers in the Highland Valley Copper district. Ore Geology Reviews, 107. 10.1016/j.oregeorev.2019.02.015
    [Google Scholar]
  13. Clark, D.A. (2014) Magnetic effects of hydrothermal alteration in porphyry copper and iron‐oxide copper‐gold systems: a review. Tectonophysics, 624–625, 46–65. https://doi.org/10.1016/j.tecto.2013.12.011
    [Google Scholar]
  14. Council for Geoscience (2017) Petrophysical Analysis of Core Samples for Zinc Exploration Santa Maria Project in Brazil. Pretoria: Council for Geoscience.
    [Google Scholar]
  15. Dentith, M., Enkin, R.J., Morris, W., Adams, C. and Bourne, B. (2020) Petrophysics and mineral exploration: a workflow for data analysis and a new interpretation framework. Geophysical Prospecting, 68, 178–199. https://doi.org/10.1111/1365‐2478.12882
    [Google Scholar]
  16. Dentith, M. and Mudge, S.T. (2014) Geophysics for Mineral Exploration Geoscientist, 1st ed. Cambridge: Cambridge University Press.
    [Google Scholar]
  17. Enkin, R.J., Hamilton, T.S. and Morris, W.A. (2019) The Henkel petrophysical plot: mineralogy and lithology from physical properties. Geochemistry, Geophysics and Geosystems, 21. https://doi.org/10.1029/2019GC008818
    [Google Scholar]
  18. Fambrini, G.L., Janikian, L., De Almeida, R.P. and Fragoso‐Cesar, A.R.S. (2007) Evolução estratigráfica e paleogeográfica do grupo Santa Bárbara (Ediacarano) na Sub‐Bacia Camaquã Central, RS. Geologia USP ‐ Serie Cientifica, 7, 1–24. https://doi.org/10.5327/Z1519‐874X2007000200001
    [Google Scholar]
  19. Fruchting, A. (2017) Estratégia para utilização de dados geofísicos na exploração de mineralizações do tipo Ni‐Cu‐PGE: a descoberta do depósito de Limoeiro ‐ PE. Universidade de Brasilia.
    [Google Scholar]
  20. Hoerlle, G., Vinicius, M., Remus, D., Dani, N., Elisa, M., Gomes, B. and Henrique, L. (2019) Evolution of fluorite–mica–feldspar veins: evidences of a fossil geothermal system in the São Gabriel terrane and consequences for Pb–Zn–Cu metallogeny. Journal of South American Earth Sciences, 92, 209–221. https://doi.org/10.1016/j.jsames.2019.03.006
    [Google Scholar]
  21. Kretz, R. (1983) Symbols for rock‐forming minerals. American Mineralogist, 68, 277–279.
    [Google Scholar]
  22. Li, Y., Zuo, R., Bai, Y. and Yang, M. (2014) The relationships between magnetic susceptibility and elemental variations for mineralized rocks. Journal of Geochemical Exploration, 146, 17–26. https://doi.org/10.1016/j.gexplo.2014.07.010
    [Google Scholar]
  23. McGladrey, A.J., Olivo, G.R., Silva, A.M., Oliveira, G.D., Neto, B.B. and Perrouty, S. (2017) The integration of physical rock properties, mineralogy and geochemistry for the exploration of large zinc silicate deposits: a case study of the Vazante zinc deposits, Minas Gerais, Brazil. Journal of Applied Geophysics, 136, 400–416. https://doi.org/10.1016/j.jappgeo.2016.11.013
    [Google Scholar]
  24. Milkereit, B., Berrer, E.K., King, A.R., Watts, A.H., Roberts, B., Adam, E.et al. (2000) Development of 3‐D seismic exploration technology for deep nickel‐copper deposits—a case history from the Sudbury basin. Canada. Geophysics, 65, 1890–1899. https://doi.org/10.1190/1.1444873
    [Google Scholar]
  25. Paim, P.S.G., Chemale Junior, F. and Wildner, W. (2014) Estágios evolutivos Da Bacia Do Camaquã (Rs). Ciência e Natura, 36, 183–193. https://doi.org/10.5902/2179460X13748
    [Google Scholar]
  26. Paine, J. (2007) Developments in geophysical inversion in the last decade. In: B.Milkereit (Ed.), Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration. pp. 485–488.
    [Google Scholar]
  27. Philipp, R.P., Pimentel, M.M. and ChemaleJr, F. (2016) Tectonic evolution of the Dom Feliciano Belt in Southern Brazil: geological relationships and U‐Pb geochronology. Brazilian Journal of Geology, 46, 83–104. https://doi.org/10.1590/2317‐4889201620150016
    [Google Scholar]
  28. Pirajno, F. (2009) Hydrothermal processes and mineral systems. Hydrothermal Processes and Mineral Systems. https://doi.org/10.1007/978‐1‐4020‐8613‐7
  29. Renac, C., Mexias, A.S., Gomes, M.E.B., Ronchi, L.H., Nardi, L.V.S. and Laux, J.H. (2014) Isotopic fluid changes in a Neoproterozoic porphyry-epithermal system: The Uruguay mine, southern Brazil. Ore Geology Reviews, 60, 146–160. https://doi.org/10.1016/j.oregeorev.2013.12.016
    [Google Scholar]
  30. Remus, M.V.D., Hartmann, L.A., MacNaughton, N.J., Groves, D.I. and Reischl, J.L. (2000) Distal magmatic‐hydrothermal origin for the Camaquã Cu (Au–Ag) and Santa Maria Pb, Zn (Cu–Ag) deposits, Southern Brazil. Gondwana Research, 3, 155–174.
    [Google Scholar]
  31. Saalmann, K., Gerdes, A., Lahaye, Y., Hartmann, L.A., Remus, M.V.D. and Laufer, A. (2011) Multiple accretion at the eastern margin of the Rio de la Plata craton : the prolonged Brasiliano orogeny in southernmost Brazil. Geologische Rundschau, 100, 355–378. https://doi.org/10.1007/s00531‐010‐0564‐8
    [Google Scholar]
  32. Salisbury, M.H. (1996) Seismic imaging of massive sulfide deposits: Part I. Rock properties. Economic Geology, 91, 821–828.
    [Google Scholar]
  33. Sandrin, A., Edfelt, Å., Waight, T.E., Berggren, R. and Elming, S.‐å. (2009) Physical properties and petrologic description of rock samples from an IOCG mineralized area in the northern Fennoscandian Shield, Sweden. Journal of Geochemical Exploration, 103, 80–96. https://doi.org/10.1016/j.gexplo.2009.07.002
    [Google Scholar]
  34. Sharma, R., Gupta, V., Arora, B.R. and Sen, K. (2011) Tectonophysics petrophysical properties of the Himalayan granitoids: implication on composition and source. Tectonophysics, 497, 23–33. https://doi.org/10.1016/j.tecto.2010.10.016
    [Google Scholar]
  35. Shoqeir, J.H., Hoetzl, H. and Flexer, A. (2014) Integration of electrical resistivity and electromagnetic radiation methods for fracture flow system detection. Scientific Research, 5, 863–875.
    [Google Scholar]
  36. Sillitoe, R.H. and Hedenquist, J.W. (2003) Linkages between volcanotectonic settings, ore‐fluid compositions, and epithermal precious‐metal deposits. In: Simmons, S.F. and Graham, I.J. (Eds.) Volcanic, Geothermal and Ore‐Forming Fluids: Rulers and Witnesses of Processes within the Earth. Littleton, CO: Society of Economic Geologists, pp. 315–343. https://doi.org/10.1126/science.101.2621.295‐b
    [Google Scholar]
  37. Telford, W.M., Geldart, L.P. and Sheriff, R.E. (1990) Applied Geophysics, 2nd edition. Melbourne:Cambridge University Press.
    [Google Scholar]
  38. Veigel, R. and Dardenne, M.A. (1990) Paragênese e sucessão mineral nas diferentes etapas da evolução da mineralização Cu–Pb–Zn do Distrito de Camaquã, RS. Revista Brasileira de Geociências, 20, 55–67.
    [Google Scholar]
  39. Wendt, A.S., Vaughan, A.P.M., Ferraccioli, F. and Grunow, A.M. (2013) Magnetic susceptibilities of rocks of the Antarctic Peninsula: implications for the redox state of the batholith and the extent of metamorphic zones. Tectonophysics, 585, 48–67.
    [Google Scholar]
  40. Williams, N.C. (2009) Mass and magnetic properties for 3D geological and geophysical modelling of the southern Agnew‐Wiluna Greenstone Belt and Leinster nickel deposits, Western Australia. Australian Journal of Earth Sciences, 56, 1111–1142. https://doi.org/10.1080/08120090903246220
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13180
Loading
/content/journals/10.1111/1365-2478.13180
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error