1887
Volume 70, Issue 4
  • E-ISSN: 1365-2478
PDF

Abstract

ABSTRACT

Seismic reconstruction of missing traces is an extremely important subject in seismic data processing. It includes both interpolation and extrapolation of sparsely recorded data. Extrapolation is often performed in the absence of near‐offset seismic data recorded through marine acquisition. Several reconstruction methods have been designed to circumvent this sparsity in time–offset, frequency–offset and time–frequency domains. In this research, I propose an oriented extrapolation workflow to reconstruct near‐offset missing traces. The term oriented or velocity‐independent refers to those techniques that are based on the use of local slopes. In the proposed workflow, I use an oriented time‐warping algorithm called predictive painting. This algorithm is suitable to predict two‐way traveltimes between two distinctive points of an event. Seismic events recorded by an off‐end array very rarely contain dips of both signs with respect to their zero‐offset location in common‐midpoint domain. This makes the domain an ideal choice to run the algorithm. The proposed algorithm is demonstrated on synthetic and field data examples. I decimate near‐offset seismic traces and reconstruct them through the algorithm. The reconstruction results are compared with the original data before decimation. Furthermore, insensitivity of the proposed workflow to the presence of class II amplitude‐versus‐offset anomalies is demonstrated on a synthetic example. I also perform a velocity‐dependent (a normal‐moveout‐based) technique on the field data and compare the corresponding outcomes with the results achieved by the application of the proposed velocity‐independent approach. All the results suggest that the proposed technique has the potential to be used in the exploration industry.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13195
2022-04-14
2022-05-29
Loading full text...

Full text loading...

/deliver/fulltext/gpr/70/4/gpr13195.html?itemId=/content/journals/10.1111/1365-2478.13195&mimeType=html&fmt=ahah

References

  1. Barnes, A.E. (1996) Theory of 2‐D complex seismic trace analysis. Geophysics, 61(1), 264–272, https://doi.org/10.1190/1.1443947.
    [Google Scholar]
  2. Bóna, A. (2011) Shot‐gather time migration of planar reflectors without velocity model. Geophysics, 76(2), S93–S101, https://doi.org/10.1190/1.3549641.
    [Google Scholar]
  3. Burnett, W. and Fomel, S. (2009) 3D velocity‐independent elliptically anisotropic moveout correction. Geophysics, 74(5), WB129–WB136. https://doi.org/10.1190/1.3184804.
    [Google Scholar]
  4. Casasanta, L. and Fomel, S. (2011) Velocity‐independent τ‐p moveout in a horizontally layered VTI medium. Geophysics, 76(4), U45–U57. https://doi.org/10.1190/1.3595776.
    [Google Scholar]
  5. Chen, Y., Zhang, L. and Mo, L. (2014) Seismic data interpolation using nonlinear shaping regularization. Beijing International Geophysical Conference and Exposition, Beijing, China. Society of Exploration Geophysicists and Chinese Petroleum Society, 327–342. https://doi.org/10.1190/IGCBeijing2014‐095.
  6. Claerbout, J.F. (1992) Earth Soundings Analysis: Processing Versus Inversion. Boston, MA: Blackwell Scientific Publications. http://sepwww.stanford.edu/sep/prof/pvi.pdf.
    [Google Scholar]
  7. Crawley, S. (2000) Seismic trace interpolation with nonstationary prediction error filters. Ph.D. thesis, Stanford University. http://sepwww.stanford.edu/data/media/public/docs/sep104/paper.pdf.
  8. Douma, H. and de Hoop, M. (2007) Leading‐order seismic imaging using curvelets. Geophysics, 72(6), S231–S248. https://doi.org/10.1190/1.2785047.
    [Google Scholar]
  9. Fomel, S. (2002) Applications of plane‐wave destruction filters. Geophysics, 67(6), 1946–1960. https://doi.org/10.1190/1.1527095.
    [Google Scholar]
  10. Fomel, S. (2003) Seismic reflection data interpolation with differential offset and shot continuation. Geophysics, 68(2), 733–744. https://doi.org/10.1190/1.1567243.
    [Google Scholar]
  11. Fomel, S. (2007) Velocity‐independent time‐domain seismic imaging using local event slopes. Geophysics, 72(3), S139–S147. https://doi.org/10.1190/1.2714047.
    [Google Scholar]
  12. Fomel, S. (2010) Predictive painting of 3D seismic volumes. Geophysics, 75(4), A25–A30. https://doi.org/10.1190/1.3453847.
    [Google Scholar]
  13. Fomel, S., Sava, P., Vlad, I., Liu, Y. and Bashkardin, V. (2013) Madagascar: open‐source software project for multidimensional data analysis and reproducible computational experiments. Journal of Open Research Software, 1(1), e8. https://doi.org/10.5334/jors.ag.
    [Google Scholar]
  14. Gan, S., Chen, Y., Wang, S., Chen, X., Huang, W. and Chen, H. (2016) Compressive sensing for seismic data reconstruction using a fast projection onto convex sets algorithm based on the seislet transform. Journal of Applied Geophysics, 130, 194–208. https://doi.org/10.1016/j.jappgeo.2016.03.033.
    [Google Scholar]
  15. Gan, S., Wang, S., Chen, Y., Jin, Z. and Zhang, Y. (2015) Dealiased seismic data interpolation using seislet transform with low‐frequency constraint. IEEE Geoscience and Remote Sensing Letters, 12, 2150–2154. https://doi.org/10.1109/LGRS.2015.2453119.
    [Google Scholar]
  16. Gülünay, N. (2003) Seismic trace interpolation in the Fourier transform domain. Geophysics, 68(1), 355–369. https://doi.org/10.1190/1.1543221.
    [Google Scholar]
  17. Herrmann, F.J. and Hennenfent, G. (2008) Non‐parametric seismic data recovery with curvelet frames. Geophysical Journal International, 173(1), 233–248. https://doi.org/10.1111/j.1365‐246X.2007.03698.x.
    [Google Scholar]
  18. Ibrahim, A., Terenghi, P. and Sacchi, M.D. (2015) Wavefield reconstruction using a Stolt‐based asymptote and apex shifted hyperbolic radon transform. SEG Expanded Abstracts, 3836–3841. https://doi.org/10.1190/segam2015‐5873567.1.
    [Google Scholar]
  19. Karimi, P. (2015) Structure‐constrained relative acoustic impedance using stratigraphic coordinates. Geophysics, 80(3), A63–A67. https://doi.org/10.1190/GEO2014‐0439.1.
    [Google Scholar]
  20. Karimi, P., Fomel, S., Wood, L. and Dunlap, D. (2015) Predictive coherence. Interpretation, 3(4), SAE1–SAE7. https://doi.org/10.1190/INT‐2015‐0030.1.
    [Google Scholar]
  21. Khoshnavaz, M.J., Bóna, A., Urosevic, M., Dzunic, A. and Ung, K. (2016a) Oriented prestack time migration using local slopes and predictive painting in common‐source domain for planar reflectors. Geophysics, 81(6), S409–S418. https://doi.org/10.1190/GEO2016‐0127.1.
    [Google Scholar]
  22. Khoshnavaz, M.J., Bóna, A. and Urosevic, M. (2016b) Velocity‐independent estimation of kinematic attributes in vertical transverse isotropy media using local slopes and predictive painting. Geophysics, 81(5), U73–U85. https://doi.org/10.1190/GEO2015‐0638.1.
    [Google Scholar]
  23. Khoshnavaz, M.J. (2017) Oriented time‐domain dip moveout correction for planar reflectors in common‐source domain. Geophysics, 82(6), U87–U97. https://doi.org/10.1190/geo2016‐0577.1.
    [Google Scholar]
  24. Khoshnavaz, M.J. (2021) High‐resolution seismic velocity analysis by sign‐based weighted semblance. Geophysics, 86(6), U135–U143. https://doi.org/10.1190/geo2021‐0173.1.
    [Google Scholar]
  25. Khoshnavaz, M.J., Siahkoohi, H.R. and Bóna, A. (2018) Attenuation of spatial aliasing in CMP domain by non‐linear interpolation of seismic data along local slopes. Journal of the Earth and Space Physics, 44(4), 73–85. https://doi.org/10.22059/JESPHYS.2018.257443.1007005.
    [Google Scholar]
  26. Khoshnavaz, M.J., Siahkoohi, H.R. and Roshnadel Kahoo, A. (2021) Seismic velocity analysis in the presence of amplitude variations using local semblance. Geophysical Prospecting, 69(6), 1208–1217. https://doi.org/10.1111/1365‐2478.13118.
    [Google Scholar]
  27. Leggott, R.J., Wombell, R., Conroy, G., Noss, T. and Williams, G. (2007) An efficient least‐squares migration. EAGE Expanded Abstracts, p. 178. https://doi.org/10.3997/2214‐4609.201401856.
  28. Liu, B. and Sacchi, M.D. (2004) Minimum weighted norm interpolation of seismic records. Geophysics, 69(6), 1560–1568. https://doi.org/10.1190/1.1836829.
    [Google Scholar]
  29. Liu, G. and Chen, X. (2018) Seismic data interpolation using frequency‐domain complex nonstationary autoregression. Geophysical Prospecting, 66(3), 478–497. https://doi.org/10.1111/1365‐2478.12499.
    [Google Scholar]
  30. Liu, Y. and Fomel, S. (2010) OC‐seislet: seislet transform construction with differential offset continuation. Geophysics, 75(6), WB235–WB245. https://doi.org/10.1190/1.3479554.
    [Google Scholar]
  31. Liu, Y. and Fomel, S. (2011) Seismic data interpolation beyond aliasing using regularized nonstationary autoregression. Geophysics, 76(5), V69–V77. https://doi.org/10.1190/GEO2010‐0231.1.
    [Google Scholar]
  32. Lu, L. (1985) Application of local slant‐stack to trace interpolation. SEG Expanded Abstracts, 560–562. https://doi.org/10.1190/1.1892818.
  33. Naghizadeh, M. and Sacchi, M.D. (2007) Multistep autoregressive reconstruction of seismic records. Geophysics, 72(6), V111–V118. https://doi.org/10.1190/1.2771685.
    [Google Scholar]
  34. Naghizadeh, M. and Sacchi, M.D. (2010) Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data. Geophysics, 75(6), WB189–WB202. https://doi.org/10.1190/1.3509468.
    [Google Scholar]
  35. Ottolini, R. (1983) Velocity independent seismic imaging: Stanford University. Technical report, Stanford Exploration Project, SEP‐37.
  36. Porsani, M. (1999) Seismic trace interpolation using half‐step prediction filters. Geophysics, 64(5), 1461–1467. https://doi.org/10.1190/1.1444650.
    [Google Scholar]
  37. Raeisdana, A., Khoshnavaz, M.J. and Siahkoohi, H.R. (2021) Oriented NMO correction of VTI data in the absence of near‐offset traces. Geophysics, 87(1), 1–41. https://doi.org/10.1190/geo2020‐0943.1.
    [Google Scholar]
  38. Ronen, J. (1987) Wave‐equation trace interpolation. Geophysics, 52(7), 973–984. https://doi.org/10.1190/1.1442366.
    [Google Scholar]
  39. Sacchi, M.D., Verschuur, D.J. and Zwartjes, P.M. (2004) Data reconstruction by generalized deconvolution. SEG Expanded Abstracts, 1989–1992. https://doi.org/10.1190/1.1843303.
  40. Schleicher, J., Costa, J.C., Santos, L.T., Novais, A. and Tygel, M. (2009) On the estimation of local slopes. Geophysics, 74(4), P25–P33. https://doi.org/10.1190/1.3119563.
    [Google Scholar]
  41. Spitz, S. (1991) Seismic trace interpolation in the F‐X domain. Geophysics, 56(6), 785–794. https://doi.org/10.1190/1.1443096.
    [Google Scholar]
  42. Stolt, R.H. (2002) Seismic data mapping and reconstruction. Geophysics, 67(3), 890–908. https://doi.org/10.1190/1.1484532.
    [Google Scholar]
  43. Trad, D., Ulrych, T.J. and Sacchi, M.D. (2002) Accurate interpolation with high‐resolution time‐variant Radon transforms. Geophysics, 67(2), 644–656. https://doi.org/10.1190/1.1468626.
    [Google Scholar]
  44. Trickett, S.R. (2003) F‐xy eigenimage noise suppression. Geophysics, 68(2), 751–759, https://doi.org/10.1190/1.1567245.
    [Google Scholar]
  45. Turner, G. (1990) Aliasing in the τ‐p transform and the removal of spatially aliased coherent noise. Geophysics, 55(11), 1496–1503. https://doi.org/10.1190/1.1442797.
    [Google Scholar]
  46. Wang, J., Ng, M. and Perz, M. (2009) Fast high‐resolution Radon transforms by greedy least‐squares method. SEG Expanded Abstracts, 3128–3132. https://doi.org/10.1190/1.3255506.
  47. Xu, S., Zhang, Y., Pham, D.L. and Lambaré, G. (2005) Antileakage Fourier transform for seismic data regularization. Geophysics, 70(4), V87–V95. https://doi.org/10.1190/1.1993713.
    [Google Scholar]
  48. Yilmaz, O. (2001) Seismic data analysis. SEG. https://doi.org/10.1190/1.9781560801580.
  49. Yu, Z., Ferguson, J., McMechan, G. and Anno, P. (2007) Wavelet‐Radon domain dealiasing and interpolation of seismic data. Geophysics, 72(2), V41–V49. https://doi.org/10.1190/1.2422797.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13195
Loading
/content/journals/10.1111/1365-2478.13195
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): CMP domain; Local slopes; Predictive painting; Seismic extrapolation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error