1887
Volume 70, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In the seismic community, the local slope is essential for various applications, including structure prediction, seislet transform, trace interpolation and denoising. The most popular method to calculate slope is the plane‐wave destruction, which assumes that the seismic data can be represented by local plane waves. However, the plane‐wave destruction method fails when the seismic data become very noisy. Taking random noise into consideration, we adopt the deep learning method to calculate the local slope. In the deep learning architecture, the input is noisy data and the target is an accurate slope estimated from the clean data using plane‐wave destruction. The deep learning architecture includes a convolutional layer, deconvolutional layer, normalization layer and activation layer which are suitable to suppress noise and learn the nonlinear relationship between the input and the target. After training, the network is applied to other test examples to calculate local slopes. In addition, we implement the seislet transform and structure prediction applications based on the estimated slope. Both the estimated slope and the related applications indicate that the proposed method can robustly obtain the local slope from noisy seismic data, compared with the plane‐wave destruction method.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13208
2022-05-18
2024-04-25
Loading full text...

Full text loading...

References

  1. Bai, M., Wu, J. & Zhang, H. (2019) Iterative deblending of simultaneous‐source data using smoothed singular spectrum analysis. Journal of Applied Geophysics, 161, 261–269.
    [Google Scholar]
  2. Bai, M., Wu, J., Zu, S. & Chen, W. (2018) A structural rank reduction operator for removing artifacts in least‐squares reverse time migration. Computers & Geosciences, 117, 9–20.
    [Google Scholar]
  3. Chen, W., Yang, L., Liu, X., Wang, H. & Chen, Y. (2022) Large dip calculation via robust nonstationary plane‐wave destruction. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–10.
    [Google Scholar]
  4. Chen, Y., Fomel, S. & Hu, J. (2014) Iterative deblending of simultaneous‐source seismic data using seislet‐domain shaping regularization. Geophysics, 79(5), V179–V189.
    [Google Scholar]
  5. Chen, Y., Zhang, G., Bai, M., Zu, S., Guan, Z. & Zhang, M. (2019) Automatic waveform classification and arrival picking based on convolutional neural network. Earth and Space Science, 6(7), 1244–1261.
    [Google Scholar]
  6. Chen, Y., Zu, S., Wang, Y. & Chen, X. (2020) Deblending of simultaneous source data using a structure‐oriented space‐varying median filter. Geophysical Journal International, 222(3), 1085–1823.
    [Google Scholar]
  7. Chen, Z., Fomel, S. & Lu, W. (2013) Accelerated plane‐wave destruction. Geophysics, 78(1), V1–V9.
    [Google Scholar]
  8. Claerbout, J.F. (1992) Earth Soundings Analysis: Processing versus Inversion, Blackwell Scientific.
    [Google Scholar]
  9. Dalai, B., Kumar, P. & Yuan, X. (2019) De‐noising receiver function data using the seislet transform. Geophysical Journal International, 217(3), 2047–2055.
    [Google Scholar]
  10. Di, H. & AlRegib, G. (2019) Reflector dip estimates based on seismic waveform curvature/flexure analysis. Interpretation, 7(2), SC1–SC9.
    [Google Scholar]
  11. Dong, X., Kang, G., Zhan, K. & Yang, Y. (2017) EraseReLU: a simple way to ease the training of deep convolution neural networks. arXiv preprint. arXiv:1709.07634.
  12. Fomel, S. (2002) Applications of plane‐wave destruction filters. Geophysics, 67(6), 1946–1960.
    [Google Scholar]
  13. Fomel, S. (2007) Velocity‐independent time‐domain seismic imaging using local event slopes. Geophysics, 72(3), S139–S147.
    [Google Scholar]
  14. Fomel, S. & Liu, Y. (2010) Seislet transform and seislet frame. Geophysics, 75(3), V25–V38.
    [Google Scholar]
  15. Gan, S., Wang, S., Chen, Y., Zhang, Y. & Jin, Z. (2015) Dealiased seismic data interpolation using seislet transform with low‐frequency constraint. IEEE Geoscience and Remote Sensing Letters, 12(10), 2150–2154.
    [Google Scholar]
  16. Geng, Z., Wu, X., Shi, Y. & Fomel, S. (2020) Deep learning for relative geologic time and seismic horizons. Geophysics, 85(4), WA87–WA100.
    [Google Scholar]
  17. Ghaderpour, E. (2019) Multichannel antileakage least‐squares spectral analysis for seismic data regularization beyond aliasing. Acta Geophysica, 67, 1349–1363.
    [Google Scholar]
  18. Guitton, A., Ayeni, G. & Díaz, E. (2012) Constrained full‐waveform inversion by model reparameterization. Geophysics, 77(2), R117.
    [Google Scholar]
  19. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S. & Lew, M.S. (2016) Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48.
    [Google Scholar]
  20. Ioffe, S. & Szegedy, C. (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint. arXiv:1502.03167.
  21. Karimi, P., Fomel, S., Wood, L. & Dunlap, D. (2015) Predictive coherence. Interpretation, 3(4), SAE1–SAE7.
    [Google Scholar]
  22. Krizhevsky, A., Sutskever, I. & Hinton, G.E. (2017) Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60, 84–90.
    [Google Scholar]
  23. LeCun, Y., Bengio, Y., et al,. (1995) Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 3361(10), 1995.
    [Google Scholar]
  24. Li, S., Liu, B., Ren, Y., Chen, Y., Yang, S., Wang, Y. & Jiang, P. (2020) Deep learning inversion of seismic data. IEEE Transactions on Geoscience and Remote Sensing, 58(3), 2135–2149.
    [Google Scholar]
  25. Liu, Y., Fomel, S. & Liu, C. (2015) Signal and noise separation in prestack seismic data using velocity‐dependent seislet transform. Geophysics, 80(6), WD117–WD128.
    [Google Scholar]
  26. Liu, Y., Fomel, S. & Liu, G. (2010) Nonlinear structure‐enhancing filtering using plane‐wave prediction. Geophysical Prospecting, 58(3), 415–427.
    [Google Scholar]
  27. Lu, P. (2019) Deep learning realm for geophysics: Seismic acquisition, processing, interpretation and inversion. arXiv preprint. arXiv:1909.06486.
  28. Ma, Y., Ji, X., BenHassan, N.M. & Luo, Y. (2018) A deep learning method for automatic fault detection. In: SEG Technical Program Expanded Abstracts2018. SEG, pp. 1941–1945.
    [Google Scholar]
  29. Marfurt, K.J. (2006) Robust estimates of 3D reflector dip and azimuth. Geophysics, 71(4), P29–P40.
    [Google Scholar]
  30. Ottolini, R. (1983) Signal/noise separation in dip space. SEP report, 37, 143–149.
    [Google Scholar]
  31. Pinheiro, P.O. & Collobert, R. (2014) Recurrent convolutional neural networks for scene labeling. In: Proceedings of the 31st International Conference on International Conference on Machine Learning, 32, I–82.
    [Google Scholar]
  32. Qu, S., Guan, Z., Verschuur, E. & Chen, Y. (2019) Automatic high‐resolution microseismic event detection via supervised machine learning. Geophysical Journal International, 218(3), 2106–2121.
    [Google Scholar]
  33. Saad, O. & Chen, Y. (2020) Deep denoising autoencoder for seismic random noise attenuation. Geophysics, 85(4), V367–V376.
    [Google Scholar]
  34. Saad, O.M., Huang, G., Chen, Y., Savvaidis, A., Fomel, S., Pham, N. & Chen, Y. (2021) Scalodeep: A highly generalized deep learning framework for real‐time earthquake detection. Journal of Geophysical Research: Solid Earth, 126, e2020JB021473.
    [Google Scholar]
  35. Shi, Y., Wu, X. & Fomel, S. (2018) Automatic salt‐body classification using a deep convolutional neural network. In: SEG Technical Program Expanded Abstracts 2018. SEG, pp. 1971–1975.
    [Google Scholar]
  36. Wang, B., Zhang, N., Lu, W. & Wang, J. (2018a) Deep‐learning‐based seismic data interpolation. A preliminary result. Geophysics, 84(1), V11–V20.
    [Google Scholar]
  37. Wang, H., Chen, Y., Saad, O.M., Oboué, Y.A.S.I., Yang, L., Fomel, S. & Chen, Y. (2022) A MATLAB code package for 2D/3D local slope estimation and structural filtering. Geophysics, 87, A25‐V203.
    [Google Scholar]
  38. Wang, W., Yang, F. & Ma, J. (2018b) Velocity model building with a modified fully convolutional network. In: SEG Technical Program Expanded Abstracts 2018. SEG, pp. 2086–2090.
    [Google Scholar]
  39. Wu, X., Geng, Z., Shi, Y., Pham, N., Fomel, S. & Caumon, G. (2020) Building realistic structure models to train convolutional neural networks for seismic structural interpretation. Geophysics, 85(4), WA27–WA39.
    [Google Scholar]
  40. Wu, Y. & McMechan, G.A. (2018) Feature‐capturing full waveform inversion using a convolutional neural network. In: SEG Technical Program Expanded Abstracts 2018. SEG, pp. 2061–2065.
    [Google Scholar]
  41. Xue, Z., Chen, Y., Fomel, S. & Sun, J. (2016) Seismic imaging of incomplete data and simultaneous‐source data using least‐squares reverse time migration with shaping regularization. Geophysics, 81(1), S11–S20.
    [Google Scholar]
  42. Yang, F. & Ma, J. (2019) Deep‐learning inversion: A next‐generation seismic velocity model building method. Geophysics, 84(4), R583–R599.
    [Google Scholar]
  43. Yu, S., Ma, J. & Wang, W. (2019) Deep learning for denoising. Geophysics, 84(6), V333–V350.
    [Google Scholar]
  44. Zeiler, M.D. (2012) ADADELTA: an adaptive learning rate method. arXiv preprint. arXiv:1212.5701.
  45. Zhang, H., Yang, H., Li, H., Huang, G. & Ding, Z. (2018) Random noise attenuation of non‐uniformly sampled 3D seismic data along two spatial coordinates using non‐equispaced curvelet transform. Journal of Applied Geophysics, 151, 221–233.
    [Google Scholar]
  46. Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. (2017) Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142–3155.
    [Google Scholar]
  47. Zhang, P., Lu, W. & Zhang, Y. (2015) Velocity analysis with local event slopes related probability density function. Journal of Applied Geophysics, 123, 177–187.
    [Google Scholar]
  48. Zhang, Z.‐D. & Alkhalifah, T. (2019) Regularized elastic full‐waveform inversion using deep learning. Geophysics, 84, R741–R751.
    [Google Scholar]
  49. Zheng, Y., Zhang, Q., Yusifov, A. & Shi, Y. (2019) Applications of supervised deep learning for seismic interpretation and inversion. The Leading Edge, 38(7), 526–533.
    [Google Scholar]
  50. Zu, S., Cao, J., Qu, S. & Chen, Y. (2020) Iterative deblending for simultaneous source data using the deep neural network. Geophysics, 85(2), V131–V141.
    [Google Scholar]
  51. Zu, S., Zhou, H., Wu, R., Jiang, M. & Chen, Y. (2019) Dictionary learning based on dip patch selection training for random noise attenuation. Geophysics, 84(3), V169–V183.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13208
Loading
/content/journals/10.1111/1365-2478.13208
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Interpretation; Inverse problem; Signal Processing

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error